Reduce number of pixels to obtain low-resolution image - matlab

I am trying to use different low resolution images for my work. Recently, I was reading the LOW RESOLUTION CONVOLUTIONAL NEURAL NETWORK FOR AUTOMATIC TARGET
RECOGNITION in which they didn't mentioned the way how they made the low resolution images.
Resolution adaptation for feature computation: To show the influence
of resolution on the performances of these image representations, we
focus on seven specific resolutions ranging from 200 × 200 to 10 × 10
pixels
Here is the example images from the paper.
Anyone please help me to implement this method in MATLAB?
Currently, I am using this way to make the Low resolution images:
img = im2double(imread('cameraman.tif'));
conv_mat = ones(6) / 36;
img_low = convn(img,conv_mat,'same');
figure, imshow(img), title('Original');
figure, imshow(img_low), title('Low Resolution')

You have a good start there. The convolution makes it so that each pixel contains the average of a 6x6 neighborhood. Now all that is left is to keep only one pixel in each 6x6 neighborhood. This pixel will have an average of the deleted information:
img = im2double(imread('cameraman.tif'));
conv_mat = ones(6) / 36;
img_low = convn(img,conv_mat,'same');
img_low = img_low(3:6:end,3:6:end)
figure, imshow(img), title('Original');
figure, imshow(img_low), title('Low Resolution')
The 3:6:end simply indicates which columns and which rows to keep. I start the subsampling at 3, to avoid the pixels that were averaged with the background.
Judging from the images you posted, they used this averaging method. Other alternatives are to take the max in the neighborhood (as is done in the max-pooling layers of a convolutional neural network), or simply subsample without any filtering (introduces aliasing, I don't recommend this method).

Related

Techniques for detecting small blobs in noisy images

I am trying to write a program that uses computer vision techniques to detect (and track) tiny blobs in a stream of very noisy images. The image stream comes from an dual X ray imaging setup, which outputs left and right views (different sizes because of collimating differently). My data is of two types: one set of images are not so noisy, which I am just using to try different techniques with, and the other set are noisier, and this is where the detection needs to work at the end. The image stream is at 60 Hz. This is an example of a raw image from the X ray imager:
Here are some cropped out samples of the regions of interest. The blobs that need to be detected are the small black spots near the center of the image.
Initially I started off with a simple contour/blob detection techniques in OpenCV, which were not very helpful. Eventually I moved on to techniques such as "opening" the image using morphological operators, and subsequently performing a Laplacian of Gaussian blob detection to detect areas of interest. This gave me better results for the low-noise versions of the images, but fails when it comes to the high-noise ones: gives me too many false positives. Here is a result from a low-noise image (please note input image was inverted).
The code for my current LoG based approach in MATLAB goes as below:
while ~isDone(videoReader)
frame = step(videoReader);
roi_frame = imcrop(frame, [660 410 120 110]);
I_roi = rgb2gray(roi_frame);
I_roi = imcomplement(I_roi);
I_roi = wiener2(I_roi, [5 5]);
background = imopen(I_roi,strel('disk',3));
I2 = imadjust(I_roi - background);
K = imgaussfilt(I2, 5);
level = graythresh(K);
bw = im2bw(I2);
sigma = 3;
% Filter image with LoG
I = double(bw);
h = fspecial('log',sigma*30,sigma);
Ifilt = -imfilter(I,h);
% Threshold for points of interest
Ifilt(Ifilt < 0.001) = 0;
% Dilate to obtain local maxima
Idil = imdilate(Ifilt,strel('disk',50));
% This is the final image
P = (Ifilt == Idil) .* Ifilt;
Is there any way I can improve my current detection technique to make it work for images with a lot of background noise? Or are there techniques better suited for images like this?
The approach I would take:
-Average background subtraction
-Aggressive Gaussian smoothing (this filter should be shaped based on your target object, off the top of my head I think you want the sigma about half the smallest cross section of your object, but you may want to fiddle with this) Basically the goal is blurring the noise as much as possible without completely losing your target objects (based on shape and size)
-Edge detection. Try to be specific to the object if possible (basically, look at what the object's edge looks like after Gaussian smoothing and set your edge detection to look for that width and contrast shift)
-May consider running a closing operation here.
-Search the whole image for islands (fully enclosed regions) filter based on size and then on shape.
I am taking a hunch that despite the incredibly low signal to noise ratio, your granularity of noise is hopefully significantly smaller than your object size. (if your noise is both equivalent contrast and same ballpark size as your object... you are sunk and need to re-evaluate your acquisition imo)
Another note based on your speed needs. Extreme amounts of processing savings can be made through knowing last known positions and searching locally and also knowing where new targets can enter the image from.

Subpixel edge detection for almost vertical edges

I want to detect edges (with sub-pixel accuracy) in images like the one displayed:
The resolution would be around 600 X 1000.
I came across a comment by Mark Ransom here, which mentions about edge detection algorithms for vertical edges. I haven't come across any yet. Will it be useful in my case (since the edge isn't strictly a straight line)? It will always be a vertical edge though. I want it to be accurate till 1/100th of a pixel at least. I also want to have access to these sub-pixel co-ordinate values.
I have tried "Accurate subpixel edge location" by Agustin Trujillo-Pino. But this does not give me a continuous edge.
Are there any other algorithms available? I will be using MATLAB for this.
I have attached another similar image which the algorithm has to work on:
Any inputs will be appreciated.
Thank you.
Edit:
I was wondering if I could do this:
Apply Canny / Sobel in MATLAB and get the edges of this image (note that it won't be a continuous line). Then, somehow interpolate this Sobel edges and get the co-ordinates in subpixel. Is it possible?
A simple approach would be to project your image vertically and fit the projected profile with an appropriate function.
Here is a try, with an atan shape:
% Load image
Img = double(imread('bQsu5.png'));
% Project
x = 1:size(Img,2);
y = mean(Img,1);
% Fit
f = fit(x', y', 'a+b*atan((x0-x)/w)', 'Startpoint', [150 50 10 150])
% Display
figure
hold on
plot(x, y);
plot(f);
legend('Projected profile', 'atan fit');
And the result:
I get x_0 = 149.6 pix for your first image.
However, I doubt you will be able to achieve a subpixel accuracy of 1/100th of pixel with those images, for several reasons:
As you can see on the profile, your whites are saturated (grey levels at 255). As you cut the real atan profile, the fit is biased. If you have control over the experiments, I suggest you do it again again with a smaller exposure time for instance.
There are not so many points on the transition, so there is not so many information on where the transition is. Typically, your resolution will be the square root of the width of the atan (or whatever shape you prefer). In you case this limits the subpixel resolution at 1/5th of a pixel, at best.
Finally, your edges are not stricly vertical, they are slightly titled. If you choose to use this projection method, to increase the accuracy you should look for a way to correct this tilt before projecting. This won't increase your accuracy by several orders of magnitude, though.
Best,
There is a problem with your image. At pixel level, it seems like there are four interlaced subimages (odd and even rows and columns). Look at this zoomed area close to the edge.
In order to avoid this artifact, I just have taken the even rows and columns of your image, and compute subpixel edges. And finally, I look for the best fitting straight line, using the function clsq whose code is in this page:
%load image
url='http://i.stack.imgur.com/bQsu5.png';
image = imread(url);
imageEvenEven = image(1:2:end,1:2:end);
imshow(imageEvenEven, 'InitialMagnification', 'fit');
% subpixel detection
threshold = 25;
edges = subpixelEdges(imageEvenEven, threshold);
visEdges(edges);
% compute fit line
A = [ones(size(edges.x)) edges.x edges.y];
[c n] = clsq(A,2);
y = [1,200];
x = -(n(2)*y+c) / n(1);
hold on;
plot(x,y,'g');
When executing this code, you can see the green line that best aproximate all the edge points. The line is given by the equation c + n(1)*x + n(2)*y = 0
Take into account that this image has been scaled by 1/2 when taking only even rows and columns, so the right coordinates must be scaled.
Besides, you can try with the other tree subimages (imageEvenOdd, imageOddEven and imageOddOdd) and combine the four straigh lines to obtain the best solution.

How to use Graph Cuts for segmenting objects in grayscale 2D images?

I need to extract out some unwanted objects from chest x-ray images using Shai Bagon's Matlab Wrapper for Graph Cuts suggested by #rayryeng in this post.
I've read the paper by Boykov and got some idea of how Graph Cuts work. I've also downloaded the Shai Bagon's Matlab Warpper for Graph Cuts and compiled the required mex files. To get started, I downloaded the simple example of image segmentation. But, I'm confused of how I could use
[gch ...] = GraphCut(mode, ...);
for segmenting the unwanted objects in grayscale 2D images.
Any help is appreciated as always. Thanks.
The very basics:
img = imread('http:%//i.stack.imgur.com/nntda.png'); %// read the image
img = img(:,:,1); %// use only one channel as it is a gray scale image
Observing that the object is mostly brighter than 110, while the rest of the lungs are darker than this value, you can define the per-pixel data term:
Dc(:,:,1) = img > 110; %// cost of 1-st label (bg): penalize pixels brighter than 110
Dc(:,:,2) = img < 110; %// cost of 2-nd label (fg): penalize pixels darker than 110
lambda = 11; %// relative weight of smoothness cost vs. data cost
Sc = [0 1; 1 0]; %// give 0 cost for bg-bg or fg-fg transitions, and 1 cost for fg-bg transitions
Perform the optimization using GraphCut wrapper:
gch = GraphCut( 'open', Dc, lambda * Sc ); %// define the graph
[gch L] = GraphCut('expand', gch ); %//optimize and get the labeling L
gch=GraphCut('close',gch); %// clean up the mess
What can you do next? (Apart from upvoting and accepting this extraordinary answer)
Use a more sophisticated data cost - use L1 or L2 "distance" from the 110-level threshold.
Use a "smoother" smoothness cost - make the smoothness cost dependent on image edges.
Use an 8-connected grid graph rather than the default 4-connected - this will reduce the "staircase"-ness shape of the segmentation boundary.
Use a better foreground/background model - make an appearance model based on image patches rather on single pixels.
I'll leave it to you to figure out more exciting ways to improve on this method...

Decomposing an image into two frequency components using DCT?

I am a beginner in digital image processing field, recently I am working on a project where I have to decompose an image into two frequency components namely (low and high) using DCT. I searched a lot on web and I found that MATLAB has a built-in function for Discrete Cosine Transform which is used like this:
dct_img = dct2(img);
where img is input image and dct_img is resultant DCT of img.
Question
My question is, "How can I decompose the dct_img into two frequency components namely low and high frequency components".
As you've mentioned, dct2 and idct2 will do most of the job for you. The question that remains is then: What is high frequency and what is low frequency content? The coefficients after the 2 dimensional transform will actually represent two frequencies each (one in x- and one in y-direction). The following figure shows the bases for each coefficient in an 8x8 discrete cosine transform:
Therefore, that question of low vs. high can be answered in different ways. A common way, which is also used in the JPEG encoding, proceeds diagonally from zero-frequency downto the max as shown above. As we can see in the following example that is mostly motivated because natural images are largely located in the "top left" corner of "low" frequencies. It is certainly worth looking at the result of dct2 and play around with the actual choice of your regions for high and low.
In the following I'm dividing the spectrum diagonally and also plotting the DCT coefficients - in logarithmic scale because otherwise we would just see one big peak around (1,1). In the example I'm cutting far above half of the coefficients (adjustable with cutoff) we can see that the high-frequency part ("HF") still contains some relevant image information. If you set cutoff to 0 or below only noise of small amplitude will be left.
%// Load an image
Orig = double(imread('rice.png'));
%// Transform
Orig_T = dct2(Orig);
%// Split between high- and low-frequency in the spectrum (*)
cutoff = round(0.5 * 256);
High_T = fliplr(tril(fliplr(Orig_T), cutoff));
Low_T = Orig_T - High_T;
%// Transform back
High = idct2(High_T);
Low = idct2(Low_T);
%// Plot results
figure, colormap gray
subplot(3,2,1), imagesc(Orig), title('Original'), axis square, colorbar
subplot(3,2,2), imagesc(log(abs(Orig_T))), title('log(DCT(Original))'), axis square, colorbar
subplot(3,2,3), imagesc(log(abs(Low_T))), title('log(DCT(LF))'), axis square, colorbar
subplot(3,2,4), imagesc(log(abs(High_T))), title('log(DCT(HF))'), axis square, colorbar
subplot(3,2,5), imagesc(Low), title('LF'), axis square, colorbar
subplot(3,2,6), imagesc(High), title('HF'), axis square, colorbar
(*) Note on tril: The lower triangle-function operates with respect to the mathematical diagonal from top-left to bottom-right, since I want the other diagonal I'm flipping left-right before and afterwards.
Also note that this kind of operations are not usually applied to entire images, but rather to blocks of e.g. 8x8. Have a look at blockproc and this article.
An easy example:
I2 = dct_img;
I2(8:end,8:end) = 0;
I3 = idct2(I2);
imagesc(I3)
I3 can be seen as the image after low pass filter (the low frequency components), then idct2(dct_img - I2) can be viewed as high frequency.

How to remove camera noises in CMOS camera

Here with i have attached two consecutive frames captured by a cmos camera with IR Filter.The object checker board was stationary at the time of capturing images.But the difference between two images are nearly 31000 pixels.This could be affect my result.can u tell me What kind of noise is this?How can i remove it.please suggest me any algorithms or any function possible to remove those noises.
Thank you.Sorry for my poor English.
Image1 : [1]: http://i45.tinypic.com/2wptqxl.jpg
Image2: [2]: http://i45.tinypic.com/v8knjn.jpg
That noise appears to result from camera sensor (Bayer to RGB conversion). There's the checkerboard pattern still left.
Also lossy jpg contributes a lot to the process. You should first have an access to raw images.
From those particular images I'd first try to use edge detection filters (Sobel Horizontal and Vertical) to make a mask that selects between some median/local histogram equalization for the flat areas and to apply some checker board reducing filter to the edges. The point is that probably no single filter is able to do good for both jpeg ringing artifacts and to the jagged edges. Then the real question is: what other kind of images should be processed?
From the comments: if corner points are to be made exact, then the solution more likely is to search for features (corner points with subpixel resolution) and make a mapping from one set of points to the other images set of corners, and search for the best affine transformation matrix that converts these sets to each other. With this matrix one can then perform resampling of the other image.
One can fortunately estimate motion vectors with subpixel resolution without brute force searching all possible subpixel locations: when calculating a matched filter, one gets local maximums for potential candidates of exact matches. But this is not all there is. One can try to calculate a more precise approximation of the peak location by studying the matched filter outputs in the nearby pixels. For exact match the output should be symmetric. Otherwise the 'energies' of the matched filter are biased towards the second best location. (A 2nd degree polynomial fit + finding maximum can work.)
Looking closely at these images, I must agree with #Aki Suihkonen.
In my view, the main noise comes from the jpeg compression, that causes sharp edges to "ring". I'd try a "de-speckle" type of filter on the images, and see if this makes a difference. Some info that can help you implement this can be found in this link.
In a more quick and dirty fashion, you apply one of the many standard tools, for example, given the images are a and b:
(i) just smooth the image with a Gaussian filter, this can reduce noise differences between the images by an order of magnitude. For example:
h=fspecial('gaussian',15,2);
a=conv2(a,h,'same');
b=conv2(b,h,'same');
(ii) Reduce Noise By Adaptive Filtering
a = wiener2(a,[5 5]);
b = wiener2(b,[5 5]);
(iii) Adjust ntensity Values Using Histogram Equalization
a = histeq(a);
b = histeq(b);
(iv) Adjust Intensity Values to a Specified Range
a = imadjust(a,[0 0.2],[0.5 1]);
b = imadjust(b,[0 0.2],[0.5 1]);
If your images are supposed to be black and white but you have captured them in gray scale there could be difference due to noise.
You can convert the images to black and white by defining a threshold, any pixel with a value less than that threshold should be assigned 0 and anything larger than that threshold should be assigned 1, or whatever your gray scale range is (maybe 255).
Assume your image is I, to make it black and white assuming your gray scale image level is from 0 to 255, assume you choose a threshold of 100:
ind = find(I < 100);
I(ind) = 0;
ind = find(I >= 100);
I(ind) = 255;
Now you have a black and white image, do the same thing for the other image and you should get very small difference if the camera and the subject have note moved.