Does pyDatalog have a "cut" operator like prolog? - operator-keyword

This may be quite simple, but i can't find the answer anywhere. In Prolog, when you want to prevent it from searching for additional answers, once a variable has already been instantiated, you can use the ! sign (usually called the "cut" sign).
You can see it in this link to understand what i mean:
http://www.learnprolognow.org/lpnpage.php?pagetype=html&pageid=lpn-htmlse44
for example, given the rule:
max(X,Y,Z) :- X =< Y,!, Y = Z.
if we query:
max(X,Y,X).
the ! sign will prevent prolog from backtracking and trying to prove (X =< Y) by re-instantiating X. This means that all answers will have the same value for X in them.
Is there something like this in pyDatalaog?

No, it doesn't have the cut operator. Cut is not part of Datalog, in general.
However, pyDatalog stops after finding the first value for given arguments of a function. The reference page says : "a function should be defined with the most general clause first, and more specific clauses next. When querying a function, the last one is used first, and the query stops when an answer is found."
So, you may get what you need with the following definition:
+ (max[X,Y] == Y)
(max[X,Y] == X) <= (Y < X)
Note however that there is an open issue.

Related

Access variable after its assumptions are cleared

After this
restart; about(x); assume(x>0); f:=3*x; x:='x': about(x);
Originally x, renamed x~:
is assumed to be: RealRange(Open(0),infinity)
f := 3*x~
x:
nothing known about this object
I can use indets to access the variable x (looks like it's still x~ in f), for example
eval(f,indets(f)[1]=2);
6
but it's not efficient when f has many variables. I've tried to access variable x (or x~) directly, but it didn't work:
eval(f,x=2);
eval(f,x~=2);
eval(f,'x'=2);
eval(f,'x~'=2);
eval(f,`x`=2);
eval(f,`x~`=2);
eval(f,cat(x,`~`)=2);
since the result in all those cases was 3*x~ (not 6).
Is there a way to access a specific variable directly (i.e. without using indets) after its assumptions are cleared?
There is no direct way, if utilizing assume, without programatically extracting/converting/replacing the assumed names in the previously assigned expression.
You can store the (assumed) name in another variable, and utilize that -- even after unassigning x.
Or you can pick off the names (including previously assumed names) from f using indets -- even after unassigning x.
But both of those are awkward, and it gets more cumbersome if there are many such names.
That is one reason why some people prefer to utilize assuming instead of the assume facility.
You can construct lists/sets/sequences of the relevant assumptions, and then re-utilize those in multiple assuming instances. But the global names are otherwise left alone, and your problematic mismatch situation avoided.
Another alternative is to utilize the command Physics:-assume instead of assume.
Here's an example. Notice that the assumption that x is positive still allows some simplification that depend upon it.
restart;
Physics:-Assume(x>0);
{x::(RealRange(Open(0),
infinity))}
about(x);
Originally x, renamed x:
is assumed to be:
RealRange(Open(0),infinity)
f:=3*x;
f := 3 x
simplify(sqrt(x^2));
x
Physics:-Assume('clear'={x});
{}
about(x);
x:
nothing known about this object
eval(f, [x=2]);
6
As for handling the original example utilizing assume, and substituting in f for the (still present, assumed names), it can be done programmatically to alleviate some awkwardness with, say, a larger set of assumptions. For example,
restart;
# re-usable utility
K:=(e,p)->eval(e,
eval(map(nm->nm=parse(sprintf("%a",nm)),
indets(e,And(name,
satisfies(hasassumptions)))),
p)):
assume(x>0, y>0, t<z);
f:=3*x;
f := 3 x
g:=3*x+y-sin(t);
g := 3 x + y - sin(t)
x:='x': y:='y': t:='t':
K(f,[x=2]);
6
K(g,[x=2,y=sqrt(2),t=11]);
(1/2)
6 + 2 - sin(11)

What is the correct way to select real solutions?

Suppose one needs to select the real solutions after solving some equation.
Is this the correct and optimal way to do it, or is there a better one?
restart;
mu := 3.986*10^5; T:= 8*60*60:
eq := T = 2*Pi*sqrt(a^3/mu):
sol := solve(eq,a);
select(x->type(x,'realcons'),[sol]);
I could not find real as type. So I used realcons. At first I did this:
select(x->not(type(x,'complex')),[sol]);
which did not work, since in Maple 5 is considered complex! So ended up with no solutions.
type(5,'complex');
(* true *)
Also I could not find an isreal() type of function. (unless I missed one)
Is there a better way to do this that one should use?
update:
To answer the comment below about 5 not supposed to be complex in maple.
restart;
type(5,complex);
true
type(5,'complex');
true
interface(version);
Standard Worksheet Interface, Maple 18.00, Windows 7, February
From help
The type(x, complex) function returns true if x is an expression of the form
a + I b, where a (if present) and b (if present) are finite and of type realcons.
Your solutions sol are all of type complex(numeric). You can select only the real ones with type,numeric, ie.
restart;
mu := 3.986*10^5: T:= 8*60*60:
eq := T = 2*Pi*sqrt(a^3/mu):
sol := solve(eq,a);
20307.39319, -10153.69659 + 17586.71839 I, -10153.69659 - 17586.71839 I
select( type, [sol], numeric );
[20307.39319]
By using the multiple argument calling form of the select command we here can avoid using a custom operator as the first argument. You won't notice it for your small example, but it should be more efficient to do so. Other commands such as map perform similarly, to avoid having to make an additional function call for each individual test.
The types numeric and complex(numeric) cover real and complex integers, rationals, and floats.
The types realcons and complex(realcons) includes the previous, but also allow for an application of evalf done during the test. So Int(sin(x),x=1..3) and Pi and sqrt(2) are all of type realcons since following an application of evalf they become floats of type numeric.
The above is about types. There are also properties to consider. Types are properties, but not necessarily vice versa. There is a real property, but no real type. The is command can test for a property, and while it is often used for mixed numeric-symbolic tests under assumptions (on the symbols) it can also be used in tests like yours.
select( is, [sol], real );
[20307.39319]
It is less efficient to use is for your example. If you know that you have a collection of (possibly non-real) floats then type,numeric should be an efficient test.
And, just to muddy the waters... there is a type nonreal.
remove( type, [sol], nonreal );
[20307.39319]
The one possibility is to restrict the domain before the calculation takes place.
Here is an explanation on the Maplesoft website regarding restricting the domain:
4 Basic Computation
UPD: Basically, according to this and that, 5 is NOT considered complex in Maple, so there might be some bug/error/mistake (try checking what may be wrong there).
For instance, try putting complex without quotes.
Your way seems very logical according to this.
UPD2: According to the Maplesoft Website, all the type checks are done with type() function, so there is rather no isreal() function.

Need an explanation for a confusing way the AND boolean works

I am tutoring someone in basic search and sorts. In insertion sort I iterate negatively when I have a value that is greater than the one previous to it in numerical terms. Now of course this approach can cause issues because there is a check which calls for array[-1] which does not exist.
As underlined in bold below, adding the and x > 0 boolean prevents the index issue.
My question is how is this the case? Wouldn't the call for array[-1] still be made to ensure the validity of both booleans?
the_list = [10,2,4,3,5,7,8,9,6]
for x in range(1,len(the_list)):
value = the_list[x]
while value < the_list[x-1] **and x > 0**:
the_list[x] = the_list[x-1]
x=x-1
the_list[x] = value
print the_list
I'm not sure I completely understand the question, and I don't know what programming language this is, but most modern programming languages use so-called short-circuit Boolean evaluation by default so that the logical expression isn't evaluated further once the outcome is known.
You can use that to guard against range overflow, like this:
while x > 0 and value < the_list[x-1]
but the check of x's range here must come before the use.
AND operation returns true if and only if both arguments are true, so if one of arguments is false there's no point of checking others as the final value is already known at that point. As for your example, usually evaluation goes from left to right but it is not a principle and it looks the language you used is not following that rule (othewise it still should crash on array lookup). But ut may be, this particular implementation optimizes this somehow (which IMHO is not good idea) and evaluates "simpler" things first (like checking if x > 0) before it look up the array. check the specs why this exact order works for you as in most popular languages you would still crash if test x > 0 wouldn't be evaluated before lookup

Problem when trying to define an operator in Prolog

I have defined a prolog file with the following code:
divisible(X, Y) :-
X mod Y =:= 0.
divisibleBy(X, Y) :-
divisible(X, Y).
op(35,xfx,divisibleBy).
Prolog is complaining that
'$record_clause'/2: No permission to modify static_procedure `op/3'
What am I doing wrong? I want to define an divisibleBy operator that will allow me to write code like the following:
4 divisibleBy 2
Thanks.
Use
:- op(35,xfx,divisibleBy).
:- tells the Prolog interpreter to evaluate the next term while loading the file, i.e. make a predicate call, instead of treating it as a definition (in this case a redefinition of op/3).
The answer given by #larsmans is spot-on regarding your original problem.
However, you should reconsider if you should define a new operator.
In general, I would strongly advise against defining new operators for the following reasons:
The gain in readability is often overrated.
It may easily introduce new problems in places you wouldn't normally expect buggy.
It doesn't "scale" well: a small number of operators can make code on presentation slides super-concise, but what if you add more discriminate union cases over time? More operators?

head and tail calls on empty list bringing an exception

I'm following a tutorial. (Real World Haskell)
And I have one beginner question about head and tail called on empty lists: In GHCi it returns exception.
Intuitively I think I would say they both should return an empty list. Could you correct me ? Why not ? (as far as I remember in OzML left or right of an empty list returns nil)
I surely have not yet covered this topic in the tutorial, but isnt it a source of bugs (if providing no arguments)?
I mean if ever passing to a function a list of arguments which may be optionnal, reading them with head may lead to a bug ?
I just know the GHCi behaviour, I don't know what happens when compiled.
Intuitively I think would say they both should return an empty list. Could you correct me ? Why not ?
Well - head is [a] -> a. It returns the single, first element; no list.
And when there is no first element like in an empty list? Well what to return? You can't create a value of type a from nothing, so all that remains is undefined - an error.
And tail? Tail basically is a list without its first element - i.e. one item shorter than the original one. You can't uphold these laws when there is no first element.
When you take one apple out of a box, you can't have the same box (what happened when tail [] == []). The behaviour has to be undefined too.
This leads to the following conclusion:
I surely have not yet covered this topic in the tutorial, but isnt it a source of bugs ? I mean if ever passing to a function a list of arguments which may be optionnal, reading them with head may lead to a bug ?
Yes, it is a source of bugs, but because it allows to write flawed code. Code that's basically trying to read a value that doesn't exist. So: *Don't ever use head/tail** - Use pattern matching.
sum [] = 0
sum (x:xs) = x + sum xs
The compiler can guarantee that all possible cases are covered, values are always defined and it's much cleaner to read.