Imagine that you have the following case classes:
case class B(key: String, value: Int)
case class A(name: String, data: B)
Given an instance of A, how do I create a Spark Row? e.g.
val a = A("a", B("b", 0))
val row = ???
NOTE: Given row I need to be able to get data with:
val name: String = row.getAs[String]("name")
val b: Row = row.getAs[Row]("data")
The following seems to match what you're looking for.
scala> spark.version
res0: String = 2.3.0
scala> val a = A("a", B("b", 0))
a: A = A(a,B(b,0))
import org.apache.spark.sql.Encoders
val schema = Encoders.product[A].schema
scala> schema.printTreeString
root
|-- name: string (nullable = true)
|-- data: struct (nullable = true)
| |-- key: string (nullable = true)
| |-- value: integer (nullable = false)
val values = a.productIterator.toSeq.toArray
import org.apache.spark.sql.Row
import org.apache.spark.sql.catalyst.expressions.GenericRowWithSchema
val row: Row = new GenericRowWithSchema(values, schema)
scala> val name: String = row.getAs[String]("name")
name: String = a
// the following won't work since B =!= Row
scala> val b: Row = row.getAs[Row]("data")
java.lang.ClassCastException: B cannot be cast to org.apache.spark.sql.Row
... 55 elided
Very short but probably not the fastest as it first creates a dataframe and then collects it again :
import session.implicits._
val row = Seq(a).toDF().first()
#Jacek Laskowski answer is great!
To complete:
Here some syntactic sugar:
val row = Row(a.productIterator.toSeq: _*)
And a recursive method if you happen to have nested case classes
def productToRow(product: Product): Row = {
val sequence = product.productIterator.toSeq.map {
case product : Product => productToRow(product)
case e => e
}
Row(sequence : _*)
}
I don't think there exist a public API that can do it directly. Internally Spark uses Encoder.toRow method to convert objects org.apache.spark.sql.catalyst.expressions.UnsafeRow, but this method is private. You could try to:
Obtain Encoder for the class:
val enc: Encoder[A] = ExpressionEncoder()
Use reflection to access toRow method and set it to accessible.
Call it to convert object to UnsafeRow.
Obtain RowEncoder for the expected schema (enc.schema).
Convert UnsafeRow to Row.
I haven't tried this, so I cannot guarantee it will work or not.
Related
I am trying to implement a custom UDT and be able to reference it from Spark SQL (as explained in the Spark SQL whitepaper, section 4.4.2).
The real example is to have a custom UDT backed by an off-heap data structure using Cap'n Proto, or similar.
For this posting, I have made up a contrived example. I know that I could just use Scala case classes and not have to do any work at all, but that isn't my goal.
For example, I have a Person containing several attributes and I want to be able to SELECT person.first_name FROM person. I'm running into the error Can't extract value from person#1 and I'm not sure why.
Here is the full source (also available at https://github.com/andygrove/spark-sql-udt)
package com.theotherandygrove
import org.apache.spark.sql.types._
import org.apache.spark.sql.{Row, SQLContext}
import org.apache.spark.{SparkConf, SparkContext}
object Example {
def main(arg: Array[String]): Unit = {
val conf = new SparkConf()
.setAppName("Example")
.setMaster("local[*]")
val sc = new SparkContext(conf)
val sqlContext = new SQLContext(sc)
val schema = StructType(List(
StructField("person_id", DataTypes.IntegerType, true),
StructField("person", new MockPersonUDT, true)))
// load initial RDD
val rdd = sc.parallelize(List(
MockPersonImpl(1),
MockPersonImpl(2)
))
// convert to RDD[Row]
val rowRdd = rdd.map(person => Row(person.getAge, person))
// convert to DataFrame (RDD + Schema)
val dataFrame = sqlContext.createDataFrame(rowRdd, schema)
// register as a table
dataFrame.registerTempTable("person")
// selecting the whole object works fine
val results = sqlContext.sql("SELECT person.first_name FROM person WHERE person.age < 100")
val people = results.collect
people.map(row => {
println(row)
})
}
}
trait MockPerson {
def getFirstName: String
def getLastName: String
def getAge: Integer
def getState: String
}
class MockPersonUDT extends UserDefinedType[MockPerson] {
override def sqlType: DataType = StructType(List(
StructField("firstName", StringType, nullable=false),
StructField("lastName", StringType, nullable=false),
StructField("age", IntegerType, nullable=false),
StructField("state", StringType, nullable=false)
))
override def userClass: Class[MockPerson] = classOf[MockPerson]
override def serialize(obj: Any): Any = obj.asInstanceOf[MockPersonImpl].getAge
override def deserialize(datum: Any): MockPerson = MockPersonImpl(datum.asInstanceOf[Integer])
}
#SQLUserDefinedType(udt = classOf[MockPersonUDT])
#SerialVersionUID(123L)
case class MockPersonImpl(n: Integer) extends MockPerson with Serializable {
def getFirstName = "First" + n
def getLastName = "Last" + n
def getAge = n
def getState = "AK"
}
If I simply SELECT person FROM person then the query works. I just can't reference the attributes in SQL, even though they are defined in the schema.
You get this errors because schema defined by sqlType is never exposed and is not intended to be accessed directly. It simply provides a way to express a complex data types using native Spark SQL types.
You can access individual attributes using UDFs but first lets show that the internal structure is indeed not exposed:
dataFrame.printSchema
// root
// |-- person_id: integer (nullable = true)
// |-- person: mockperso (nullable = true)
To create UDF we need functions which take as an argument an object of a type represented by a given UDT:
import org.apache.spark.sql.functions.udf
val getFirstName = (person: MockPerson) => person.getFirstName
val getLastName = (person: MockPerson) => person.getLastName
val getAge = (person: MockPerson) => person.getAge
which can be wrapped using udf function:
val getFirstNameUDF = udf(getFirstName)
val getLastNameUDF = udf(getLastName)
val getAgeUDF = udf(getAge)
dataFrame.select(
getFirstNameUDF($"person").alias("first_name"),
getLastNameUDF($"person").alias("last_name"),
getAgeUDF($"person").alias("age")
).show()
// +----------+---------+---+
// |first_name|last_name|age|
// +----------+---------+---+
// | First1| Last1| 1|
// | First2| Last2| 2|
// +----------+---------+---+
To use these with raw SQL you have register functions through SQLContext:
sqlContext.udf.register("first_name", getFirstName)
sqlContext.udf.register("last_name", getLastName)
sqlContext.udf.register("age", getAge)
sqlContext.sql("""
SELECT first_name(person) AS first_name, last_name(person) AS last_name
FROM person
WHERE age(person) < 100""").show
// +----------+---------+
// |first_name|last_name|
// +----------+---------+
// | First1| Last1|
// | First2| Last2|
// +----------+---------+
Unfortunately it comes with a price tag attached. First of all every operation requires deserialization. It also substantially limits the ways in which query can be optimized. In particular any join operation on one of these fields requires a Cartesian product.
In practice if you want to encode a complex structure, which contains attributes that can be expressed using built-in types, it is better to use StructType:
case class Person(first_name: String, last_name: String, age: Int)
val df = sc.parallelize(
(1 to 2).map(i => (i, Person(s"First$i", s"Last$i", i)))).toDF("id", "person")
df.printSchema
// root
// |-- id: integer (nullable = false)
// |-- person: struct (nullable = true)
// | |-- first_name: string (nullable = true)
// | |-- last_name: string (nullable = true)
// | |-- age: integer (nullable = false)
df
.where($"person.age" < 100)
.select($"person.first_name", $"person.last_name")
.show
// +----------+---------+
// |first_name|last_name|
// +----------+---------+
// | First1| Last1|
// | First2| Last2|
// +----------+---------+
and reserve UDTs for actual types extensions like built-in VectorUDT or things that can benefit from a specific representation like enumerations.
I have the following types in a dataframe:
root
|-- id: string (nullable = true)
|-- items: array (nullable = true)
| |-- element: string (containsNull = true)
input:
val rawData = Seq(("id1",Array("item1","item2","item3","item4")),("id2",Array("item1","item2","item3")))
val data = spark.createDataFrame(rawData)
and a list of items:
val filter_list = List("item1", "item2")
I would like to filter out items that are non in the filter_list, similar to how array_contains would function, but its not working on a provided list of strings, only a single value.
so the output would look like this:
val rawData = Seq(("id1",Array("item1","item2")),("id2",Array("item1","item2")))
val data = spark.createDataFrame(rawData)
I tried solving this with the following UDF, but I probably mix types between Scala and Spark:
def filterItems(flist: List[String]) = udf {
(recs: List[String]) => recs.filter(item => flist.contains(item))
}
I'm using Spark 2.2
thanks!
You code is almost right. All you have to do is replace List with Seq
def filterItems(flist: List[String]) = udf {
(recs: Seq[String]) => recs.filter(item => flist.contains(item))
}
It would also make sense to change signature from List[String] => UserDefinedFunction to SeqString] => UserDefinedFunction, but it is not required.
Reference SQL Programming Guide - Data Types.
I am trying to use Spark UDAF to summarize two existing columns into a new column. Most of the tutorials on Spark UDAF out there use indices to get the values in each column of the input Row. Like this:
input.getAs[String](1)
, which is used in my update method (override def update(buffer: MutableAggregationBuffer, input: Row): Unit). It works in my case as well. However I want to use the field name of the that column to get that value. Like this:
input.getAs[String](ColumnNames.BehaviorType)
, where ColumnNames.BehaviorType is a String object defined in an object:
/**
* Column names in the original dataset
*/
object ColumnNames {
val JobSeekerID = "JobSeekerID"
val JobID = "JobID"
val Date = "Date"
val BehaviorType = "BehaviorType"
}
This time it does not work. I got the following exception:
java.lang.IllegalArgumentException: Field "BehaviorType" does not
exist. at
org.apache.spark.sql.types.StructType$$anonfun$fieldIndex$1.apply(StructType.scala:292)
... at org.apache.spark.sql.Row$class.getAs(Row.scala:333) at
org.apache.spark.sql.catalyst.expressions.GenericRow.getAs(rows.scala:165)
at
com.recsys.UserBehaviorRecordsUDAF.update(UserBehaviorRecordsUDAF.scala:44)
Some relevant code segments:
This is part of my UDAF:
class UserBehaviorRecordsUDAF extends UserDefinedAggregateFunction {
override def inputSchema: StructType = StructType(
StructField("JobID", IntegerType) ::
StructField("BehaviorType", StringType) :: Nil)
override def update(buffer: MutableAggregationBuffer, input: Row): Unit = {
println("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX")
println(input.schema.treeString)
println
println(input.mkString(","))
println
println(this.inputSchema.treeString)
// println
// println(bufferSchema.treeString)
input.getAs[String](ColumnNames.BehaviorType) match { //ColumnNames.BehaviorType //1 //TODO WHY??
case BehaviourTypes.viewed_job =>
buffer(0) =
buffer.getAs[Seq[Int]](0) :+ //Array[Int] //TODO WHY??
input.getAs[Int](0) //ColumnNames.JobID
case BehaviourTypes.bookmarked_job =>
buffer(1) =
buffer.getAs[Seq[Int]](1) :+ //Array[Int]
input.getAs[Int](0)//ColumnNames.JobID
case BehaviourTypes.applied_job =>
buffer(2) =
buffer.getAs[Seq[Int]](2) :+ //Array[Int]
input.getAs[Int](0) //ColumnNames.JobID
}
}
The following is the part of codes that call the UDAF:
val ubrUDAF = new UserBehaviorRecordsUDAF
val userProfileDF = userBehaviorDS
.groupBy(ColumnNames.JobSeekerID)
.agg(
ubrUDAF(
userBehaviorDS.col(ColumnNames.JobID), //userBehaviorDS.col(ColumnNames.JobID)
userBehaviorDS.col(ColumnNames.BehaviorType) //userBehaviorDS.col(ColumnNames.BehaviorType)
).as("profile str"))
It seems the field names in the schema of the input Row are not passed into the UDAF:
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
root
|-- input0: integer (nullable = true)
|-- input1: string (nullable = true)
30917,viewed_job
root
|-- JobID: integer (nullable = true)
|-- BehaviorType: string (nullable = true)
What is the problem in my codes?
I also want to use the field names from my inputSchema in my update method to create maintainable code.
import org.apache.spark.sql.catalyst.expressions.GenericRowWithSchema
class MyUDAF extends UserDefinedAggregateFunction {
def update(buffer: MutableAggregationBuffer, input: Row) = {
val inputWSchema = new GenericRowWithSchema(input.toSeq.toArray, inputSchema)
Ultimately switched to Aggregator which ran in half the time.
The following Scala (Spark 1.6) code for reading a value from a Row fails with a NullPointerException when the value is null.
val test = row.getAs[Int]("ColumnName").toString
while this works fine
val test1 = row.getAs[Int]("ColumnName") // returns 0 for null
val test2 = test1.toString // converts to String fine
What is causing NullPointerException and what is the recommended way to handle such cases?
PS: getting row from DataFrame as follows:
val myRDD = myDF.repartition(partitions)
.mapPartitions{ rows =>
rows.flatMap{ row =>
functionWithRows(row) //has above logic to read null column which fails
}
}
functionWithRows has then above mentioned NullPointerException.
MyDF schema:
root
|-- LDID: string (nullable = true)
|-- KTAG: string (nullable = true)
|-- ColumnName: integer (nullable = true)
getAs is defined as:
def getAs[T](i: Int): T = get(i).asInstanceOf[T]
and when we do toString we call Object.toString which doesn't depend on the type, so asInstanceOf[T] get dropped by the compiler, i.e.
row.getAs[Int](0).toString -> row.get(0).toString
we can confirm that by writing a simple scala code:
import org.apache.spark.sql._
object Test {
val row = Row(null)
row.getAs[Int](0).toString
}
and then compiling it:
$ scalac -classpath $SPARK_HOME/jars/'*' -print test.scala
[[syntax trees at end of cleanup]] // test.scala
package <empty> {
object Test extends Object {
private[this] val row: org.apache.spark.sql.Row = _;
<stable> <accessor> def row(): org.apache.spark.sql.Row = Test.this.row;
def <init>(): Test.type = {
Test.super.<init>();
Test.this.row = org.apache.spark.sql.Row.apply(scala.this.Predef.genericWrapArray(Array[Object]{null}));
Test.this.row().getAs(0).toString();
()
}
}
}
So the proper way would be:
String.valueOf(row.getAs[Int](0))
In order to avoid null values, it is a better practice is to use isNullAt before checking, as the documentation suggests:
getAs
<T> T getAs(int i)
Returns the value at position i. For primitive types if value is null it
returns 'zero value' specific for primitive ie. 0 for Int - use isNullAt to ensure that value is not null
I agree the behaviour is confusing, though.
I have below Scala Spark code base, which works well, but should not.
The 2nd column has data of mixed types, whereas in Schema I have defined it of IntegerType. My actual program has over 100 columns, and keep deriving multiple child DataFrames after transformations.
How can I validate that contents of RDD or DataFrame fields have correct datatype values, and thus ignore invalid rows or change contents of column to some default value. Any more pointers for data quality checks with DataFrame or RDD are appreciated.
var theSeq = Seq(("X01", "41"),
("X01", 41),
("X01", 41),
("X02", "ab"),
("X02", "%%"))
val newRdd = sc.parallelize(theSeq)
val rowRdd = newRdd.map(r => Row(r._1, r._2))
val theSchema = StructType(Seq(StructField("ID", StringType, true),
StructField("Age", IntegerType, true)))
val theNewDF = sqc.createDataFrame(rowRdd, theSchema)
theNewDF.show()
First of all passing schema is simply a way to avoid type inference. It is not validated or enforced during DataFrame creation. On a side note I wouldn't describe ClassCastException as working well. For a moment I thought you actually found a bug.
I think the important question is how you get data like theSeq / newRdd in the first place. Is it something you parse by yourself, is it received from an external component? Simply looking at the type (Seq[(String, Any)] / RDD[(String, Any)] respectively) you already know it is not a valid input for a DataFrame. Probably the way to handle things at this level is to embrace static typing. Scala provides quite a few neat ways to handle unexpected conditions (Try, Either, Option) where the last one is the simplest one, and as a bonus works well with Spark SQL. Rather simplistic way to handle things could look like this
def validateInt(x: Any) = x match {
case x: Int => Some(x)
case _ => None
}
def validateString(x: Any) = x match {
case x: String => Some(x)
case _ => None
}
val newRddOption: RDD[(Option[String], Option[Int])] = newRdd.map{
case (id, age) => (validateString(id), validateInt(age))}
Since Options can be easily composed you can add additional checks like this:
def validateAge(age: Int) = {
if(age >= 0 && age < 150) Some(age)
else None
}
val newRddValidated: RDD[(Option[String], Option[Int])] = newRddOption.map{
case (id, age) => (id, age.flatMap(validateAge))}
Next instead of Row which is a very crude container I would use cases classes:
case class Record(id: Option[String], age: Option[Int])
val records: RDD[Record] = newRddValidated.map{case (id, age) => Record(id, age)}
At this moment all you have to do is call toDF:
import org.apache.spark.sql.DataFrame
val df: DataFrame = records.toDF
df.printSchema
// root
// |-- id: string (nullable = true)
// |-- age: integer (nullable = true)
This was the hard but arguably a more elegant way. A faster is to let SQL casting system to do a job for you. First lets convert everything to Strings:
val stringRdd: RDD[(String, String)] = sc.parallelize(theSeq).map(
p => (p._1.toString, p._2.toString))
Next create a DataFrame:
import org.apache.spark.sql.types._
import org.apache.spark.sql.Column
import org.apache.spark.sql.functions.col
val df: DataFrame = stringRdd.toDF("id", "age")
val expectedTypes = Seq(StringType, IntegerType)
val exprs: Seq[Column] = df.columns.zip(expectedTypes).map{
case (c, t) => col(c).cast(t).alias(c)}
val dfProcessed: DataFrame = df.select(exprs: _*)
And the result:
dfProcessed.printSchema
// root
// |-- id: string (nullable = true)
// |-- age: integer (nullable = true)
dfProcessed.show
// +---+----+
// | id| age|
// +---+----+
// |X01| 41|
// |X01| 41|
// |X01| 41|
// |X02|null|
// |X02|null|
// +---+----+
In version 1.4 or older
import org.apache.spark.sql.execution.debug._
theNewDF.typeCheck
It was removed via SPARK-9754 though. I haven't checked but I think typeCheck becomes sqlContext.debug beforehand