I know I can traverse Lists
import cats.instances.list._
import cats.syntax.traverse._
def doMagic(item: A): M[B] = ???
val list: List[A] = ???
val result: M[List[B]] = list.traverse(doMagic)
And I can convert a Seq back and forth to List
val seq: Seq[A] = ???
val result: M[Seq[B]] = seq.toList.traverse(doMagic).map(_.toSeq)
But can I also traverse Seq without the boilerplate?
val seq: Seq[A] = ???
val result: M[Seq[B]] = seq.traverse(doMagic)
Or what's an easy way to get an instance of Traverse[Seq]?
Cats does not provide typeclass instances for Seq, so besides implementing it yourself you're stuck with the conversion.
As to why, there's an ongoing discussion in an (somewhat old) Cats issue. To sum it up, you won't know enough about Seq underlying characteristics to make sure some of the typeclasses instances laws hold.
EDIT : Nevermind, it exists now, see linked thread
As of cats 2.3, support for immutable.Seq is now built in. See "Where are implicit instances for Seq?" on the FAQ or this PR where the functionality was added.
If you are absolutely sure that the conversion from all Seq to List will always succeed in your code, you can simply transfer the Traverse structure from List to Seq over an (pseudo-)isomorphism:
def traverseFromIso[F[_], Z[_]]
(forward: F ~> Z, inverse: Z ~> F)
(implicit zt: Traverse[Z])
: Traverse[F] = new Traverse[F] {
def foldLeft[A, B](fa: F[A], b: B)(f: (B, A) ⇒ B): B = zt.foldLeft(forward(fa), b)(f)
def foldRight[A, B](fa: F[A], lb: Eval[B])(f: (A, Eval[B]) => Eval[B]): Eval[B] =
zt.foldRight(forward(fa), lb)(f)
def traverse[G[_], A, B]
(fa: F[A])
(f: (A) ⇒ G[B])
(implicit appG: Applicative[G])
: G[F[B]] = {
(zt.traverse(forward(fa))(f)(appG)).map(zb => inverse(zb))
}
}
This isn't really an isomorphism, because the conversion from Seq to List can fail badly (e.g. if the sequence is infinite). What it does is simply converting Seq to List back and forth, and forwarding all method calls to those of Traverse[List].
Now you can use this method to build an instance of Traverse[Seq]:
implicit val seqTraverse: Traverse[Seq] = traverseFromIso(
new FunctionK[Seq, List] { def apply[X](sx: Seq[X]): List[X] = sx.toList },
new FunctionK[List, Seq] { def apply[X](lx: List[X]): Seq[X] = lx }
)
Full code snippet (compiles with scala 2.12.4 and cats 1.0.1):
import cats._
import cats.implicits._
import cats.arrow.FunctionK
import scala.language.higherKinds
object TraverseFromIso {
// This method can build you a `Traversable[Seq]` from
// an `Traversable[List]` and a pair of polymorphic conversion
// functions:
def traverseFromIso[F[_], Z[_]]
(forward: F ~> Z, inverse: Z ~> F)
(implicit zt: Traverse[Z])
: Traverse[F] = new Traverse[F] {
def foldLeft[A, B](fa: F[A], b: B)(f: (B, A) ⇒ B): B = zt.foldLeft(forward(fa), b)(f)
def foldRight[A, B](fa: F[A], lb: Eval[B])(f: (A, Eval[B]) => Eval[B]): Eval[B] =
zt.foldRight(forward(fa), lb)(f)
def traverse[G[_], A, B]
(fa: F[A])
(f: (A) ⇒ G[B])
(implicit appG: Applicative[G])
: G[F[B]] = {
(zt.traverse(forward(fa))(f)(appG)).map(zb => inverse(zb))
}
}
// A little demo
def main(args: Array[String]): Unit = {
// To instantiate a `Traverse[Seq]`, we have to provide
// two natural transformations (from List to Seq and back):
implicit val seqTraverse: Traverse[Seq] = traverseFromIso(
new FunctionK[Seq, List] { def apply[X](sx: Seq[X]): List[X] = sx.toList },
new FunctionK[List, Seq] { def apply[X](lx: List[X]): Seq[X] = lx }
)
// do stuff with `Traversable[Seq]` here
}
}
Related
Note - the operation described below now exists in the standard library as partitionMap but I believe it's still a valid question as to how to achieve more general ends
Question regarding scala 2.13 - how do I consume/construct collections of specific types when adding custom collections operations where I need to restrict the element types of the input collections? e.g. how do I define:
def split[CC[_], A, B](coll: CC[Either[A, B]]): (CC[A], CC[B])
Following the documentation I've managed to achieve this as follows:
import collection.generic.IsIterable
import scala.collection.{BuildFrom, Factory}
class SplitOperation[Repr, S <: IsIterable[Repr]](coll: Repr, itr: S) {
def split[A, B, AS, BS](
implicit bfa: BuildFrom[Repr, A, AS],
bfb: BuildFrom[Repr, B, BS],
ev: itr.A =:= Either[A, B]): (AS, BS) = {
val ops = itr(coll)
val as = bfa.fromSpecific(coll)(ops.iterator.map(ev).collect { case Left(a) => a })
val bs = bfb.fromSpecific(coll)(ops.iterator.map(ev).collect { case Right(b) => b })
(as, bs)
}
}
implicit def SplitOperation[Repr](coll: Repr)(implicit itr: IsIterable[Repr]): SplitOperation[Repr, itr.type] =
new SplitOperation(coll, itr)
However, I need to supply types at the use-site otherwise I get diverging implicit expansion.
scala> List(Left("bah"), Right(1), Left("gah"), Right(2), Right(3))
res1: List[scala.util.Either[String,Int]] = List(Left(bah), Right(1), Left(gah), Right(2), Right(3))
scala> res1.split
^
error: diverging implicit expansion for type scala.collection.BuildFrom[List[scala.util.Either[String,Int]],A,AS]
But the following works:
scala> res1.split[String, Int, List[String], List[Int]]
res4: (List[String], List[Int]) = (List(bah, gah),List(1, 2, 3))
EDIT
class SplitOperation[X, CC[_], S <: IsIterable[CC[X]]](coll: CC[X], itr: S) {
def split[A, B](implicit bfa: BuildFrom[CC[X], A, CC[A]], bfb: BuildFrom[CC[X], B, CC[B]], ev: itr.A =:= Either[A, B]): (CC[A], CC[B]) = {
val ops = itr(coll)
val as = bfa.fromSpecific(coll)(ops.iterator.map(ev).collect { case Left(a) => a })
val bs = bfb.fromSpecific(coll)(ops.iterator.map(ev).collect { case Right(b) => b })
(as, bs)
}
}
implicit def SplitOperation[A, B, CC[_]](coll: CC[Either[A, B]])(implicit itr: IsIterable[CC[Either[A, B]]]): SplitOperation[Either[A, B], CC, itr.type] =
new SplitOperation(coll, itr)
Gives me a slight improvement. Now I only need to provide type parameters A and B at the call site:
scala> l.split[String, Int]
res2: (List[String], List[Int]) = (List(bah, gah),List(1, 2))
This seems to work:
class SplitOperation[A, B, CC[_], S <: IsIterable[CC[Either[A, B]]]](coll: CC[Either[A, B]], itr: S) {
def split(implicit bfa: BuildFrom[CC[Either[A, B]], A, CC[A]], bfb: BuildFrom[CC[Either[A, B]], B, CC[B]], ev: itr.A =:= Either[A, B]): (CC[A], CC[B]) = {
val ops = itr(coll)
val as = bfa.fromSpecific(coll)(ops.iterator.map(ev).collect { case Left(a) => a })
val bs = bfb.fromSpecific(coll)(ops.iterator.map(ev).collect { case Right(b) => b })
(as, bs)
}
}
implicit def SplitOperation[A, B, CC[_]](coll: CC[Either[A, B]])(implicit itr: IsIterable[CC[Either[A, B]]]): SplitOperation[A, B, CC, itr.type] =
new SplitOperation(coll, itr)
In your case you don’t want to abstract over the “kind” of the collection type constructor (CC[_] vs CC[_, _], etc.), you always use the CC[_] kind, so you don’t need to use IsIterable.
I think it is also not necessary to support “Sorted” collections (eg, SortedSet) because there is no Ordering instance for Either, so you don’t need to use BuildFrom.
implicit class SplitOperation[A, B, CC[X] <: IterableOps[X, CC, CC[X]]](coll: CC[Either[A, B]]) {
def split: (CC[A], CC[B]) = {
val as = coll.iterableFactory.from(coll.iterator.collect { case Left(a) => a })
val bs = coll.iterableFactory.from(coll.iterator.collect { case Right(b) => b })
(as, bs)
}
}
https://scastie.scala-lang.org/64QxHwteQN2i3udSxCa3yw
Given:
import cats.syntax.cartesian._
type M[X] = Future[Either[Error, X]]
val ma: M[A] = ???
val mb: M[B] = ???
I know I can do that:
def doStuff(a: A, b: B): C = ???
val result: M[C] = (ma |#| mb).map(doStuff)
But how do I flatMap? There's no flatMap in the CartesianBuilders.
def doFancyStuff(a: A, b: B): M[C] = ???
val result: M[C] = (ma |#| mb).flatMap(doFancyStuff)
I think the main problem is that it's awkward to flatMap on a Future[Either[Error, X]] in the sense of EitherT[Future, Error, X]-monad stack, because the original flatMap of the Future gets in the way, and the compiler isn't looking for a monad instance that could handle the combination of Future and Either simultaneously. However, if you wrap the futures in EitherT, everything works smoothly.
For cats 1.0.1
In the following, (a,b).tupled corresponds to Cartesian.product(a, b), and (a, b).mapN corresponds to the deprecated (a |#| b).map.
Given types A, B, C, Error, the following code snippets compile under cats 1.0.1:
If you want to preserve your definition of M (you probably should), then you
can avoid the above mentioned problems by wrapping everything in EitherT and then
extracting the value:
import scala.util.Either
import scala.concurrent.Future
import scala.concurrent.ExecutionContext.Implicits.global // required by Monad[Future]
import cats.instances.future._ // Monad for `Future`
import cats.syntax.apply._ // `tupled` and `mapN`
import cats.data.EitherT // EitherT monad transformer
type M[X] = Future[Either[Error, X]]
val ma: M[A] = ???
val mb: M[B] = ???
def doStuff(a: A, b: B): C = ???
val result1: M[C] = (EitherT(ma), EitherT(mb)).mapN(doStuff).value
def doFancyStuff(a: A, b: B): M[C] = ???
val result2: M[C] = (for {
ab <- (EitherT(ma), EitherT(mb)).tupled
c <- EitherT(doFancyStuff(ab._1, ab._2))
} yield c).value
However, if this seems too awkward, and you can adjust the definition of M,
the following variant could be slightly shorter:
import scala.util.Either
import scala.concurrent.Future
import scala.concurrent.ExecutionContext.Implicits.global // required by Monad[Future]
import cats.instances.future._ // Monad for `Future`
import cats.syntax.apply._ // `tupled` and `mapN`
import cats.data.EitherT // EitherT monad transformer
type M[X] = EitherT[Future, Error, X]
val ma: M[A] = ??? // either adjust signatures, or wrap result in EitherT(res)
val mb: M[B] = ???
def doStuff(a: A, b: B): C = ???
val result1: M[C] = (ma, mb).mapN(doStuff)
def doFancyStuff(a: A, b: B): M[C] = ???
val result2: M[C] = (ma, mb).tupled.flatMap{
case (a, b) => doFancyStuff(a, b)
}
This is because (ma, mb).tupled builds a M[(A, B)], where M is the previously mentioned monad stack, which then can be easily flatMapped with a (A, B) => M[C] function to M[C].
For older versions with Cartesian (untested)
Assuming that (ma, mb).tupled corresponds to the deprecated Cartesian.product and (ma, mb).mapN corresponds to the deprecated (ma |#| mb).map, the two definitions of result1 and result2 in the above code snippet for 1.0.1 translate to:
val result1: M[C] = (ma |#| mb).map(doStuff)
val result2: M[C] = Cartesian[M].product(ma, mb).flatMap{
case (a, b) => doFancyStuff(a, b)
}
Again, this works only because Cartesian[M].product(ma, mb) builds an M[(A, B)] from M[A] and M[B], where M[X] is defined as EitherT[Future, Error, X]. If it were defined as Future[Either[Error, X]], then the flatMap would be invoked on the Future, and instead of doFancyStuff we would have to pass something like Either[Error, (A, B)] => Future[Either[Error, C]], which is probably not what you want.
I've used cats for the first time to solve day 1 of advent of code and I'm wondering if it's possible to improve things.
Given a method update with the following signature
def update(i: Instruction): PosAndDir => PosAndDir
I've come up with :
val state: State[PosAndDir, List[Unit]] = instructions.map(i => State.modify(update(i))).toList.sequenceU
val finalState = state.runS(PosAndDir(Pos(0, 0), North)).value
And also
def update2(i: Instruction): State[PosAndDir, Option[Pos]] =
State.modify(update(i)).inspect(pad => if (i == Walk) Some(pad.pos) else None)
…
val state = instructions.map(update2).toList.sequenceU
val positions = state.runA(PosAndDir(Pos(0, 0), North)).value.flatten
More precisely, questions are :
why do we need to call .value (with scalaz, it's transparent) ?
is there a way to write update2 with a for comprehension to improve readability ?
is there an Applicative instance for Seq in cats (I know there is not in scalaz). ?
any idea to improve the code ?
cats defines State[S, A] as an alias for stack-safe StateT[Eval, S , A] which is StateT[Trampoline, S, A] in scalaz terms, so runS returns Eval[A], where value will be run without stackoverflow even for very long flatMap sequences.
Using some more additional imports
import cats.data.{State, StateT}
import cats.MonadState
import cats.syntax.functorFilter._
import cats.instances.option._
and some preparations
type Walk[x] = StateT[Option, PosAndDir, x]
val stateMonad = MonadState[Walk, PosAndDir]
import stateMonad._
you can make your function look like this
def update2(i: Instruction): StateT[Option, PosAndDir, Pos] =
for (pad ← get if i == Walk) yield pad.pos
not that this solution will not work in 2.12 due to this improvement, you can make it work with this workaround
implicit class FunctorWithFilter[F[_] : FunctorFilter, A](fa: F[A]) {
def withFilter(f: A ⇒ Boolean) = fa.filter(f)
}
There is no instances for Seq, this answer describes why. While there are some non-orthodox instances in the alleycats project. I'm not really sure if you need for Applicative[Seq], from your code you are rather have need for Traverse[Seq], or if you replace your sequence with sequence_ even Foldable[Seq].
Good news there is Foldable[Iterable] in the alleycats, and here is my attempt to define something lookalike for Seq instance
implicit val seqInstance = new MonadFilter[Seq] with Traverse[Seq] {
def traverse[G[_] : Applicative, A, B](fa: Seq[A])(f: (A) ⇒ G[B]): G[Seq[B]] =
fa match {
case head +: tail ⇒ f(head).map2(traverse(tail)(f))(_ +: _)
case _empty ⇒ Seq.empty[B].pure[G]
}
def foldLeft[A, B](fa: Seq[A], b: B)(f: (B, A) ⇒ B): B = fa.foldLeft(b)(f)
def foldRight[A, B](fa: Seq[A], lb: Eval[B])(f: (A, Eval[B]) ⇒ Eval[B]): Eval[B] =
fa match {
case head +: tail ⇒ f(head, foldRight(tail, lb)(f))
case _empty ⇒ lb
}
def pure[A](x: A): Seq[A] = Seq(x)
def empty[A]: Seq[A] = Seq.empty[A]
def flatMap[A, B](fa: Seq[A])(f: (A) ⇒ Seq[B]): Seq[B] = fa.flatMap(f)
def tailRecM[A, B](a: A)(f: (A) ⇒ Seq[Either[A, B]]): Seq[B] = {
#tailrec def go(seq: Seq[Either[A, B]]): Seq[B] =
if (seq.contains((_: Either[A, B]).isLeft))
go(seq.flatMap {
case Left(a) ⇒ f(a)
case b ⇒ Seq(b)
}) else seq.collect { case Right(b) ⇒ b }
go(Seq(Left(a)))
}
override def mapFilter[A, B](fa: Seq[A])(f: (A) ⇒ Option[B]): Seq[B] =
fa.flatMap(f(_).toSeq)
}
didn't spent much time but here is my attempt to simplifying some parts via the Monocle library:
import cats.{MonadState, Foldable, Functor}
import cats.instances.option._
import cats.syntax.foldable._
import cats.syntax.functor._
import cats.syntax.functorFilter._
import monocle.macros.Lenses
#Lenses
case class Pos(x: Int, y: Int)
sealed abstract class Dir(val cmd: Pos ⇒ Pos)
case object South extends Dir(Pos.y.modify(_ - 1))
case object North extends Dir(Pos.y.modify(_ + 1))
case object East extends Dir(Pos.x.modify(_ + 1))
case object West extends Dir(Pos.x.modify(_ - 1))
#Lenses
case class PosAndDir(pos: Pos, dir: Dir)
val clockwise = Vector(North, East, South, West)
val right: Map[Dir, Dir] = clockwise.zip(clockwise.tail :+ clockwise.head).toMap
val left: Map[Dir, Dir] = right.map(_.swap)
sealed abstract class Instruction(val cmd: PosAndDir ⇒ PosAndDir)
case object TurnLeft extends Instruction(PosAndDir.dir.modify(left))
case object TurnRight extends Instruction(PosAndDir.dir.modify(right))
case object Walk extends Instruction(pd ⇒ PosAndDir.pos.modify(pd.dir.cmd)(pd))
def runInstructions[F[_] : Foldable : Functor](instructions: F[Instruction])(start: PosAndDir): PosAndDir =
instructions.map(i => State.modify(i.cmd)).sequence_.runS(start).value
This is a followup to my previous question with an example found on the Internet.
Suppose I define a typeclass Applicative as follows:
trait Functor[T[_]]{
def map[A,B](f:A=>B, ta:T[A]):T[B]
}
trait Applicative[T[_]] extends Functor[T] {
def unit[A](a:A):T[A]
def ap[A,B](tf:T[A=>B], ta:T[A]):T[B]
}
I can define an instance of Applicative for List
object AppList extends Applicative[List] {
def map[A,B](f:A=>B, as:List[A]) = as.map(f)
def unit[A](a: A) = List(a)
def ap[A,B](fs:List[A=>B], as:List[A]) = for(f <- fs; a <- as) yield f(a)
}
For convenience I can define an implicit conversion to add a method <*> to List[A=>B]
implicit def toApplicative[A, B](fs: List[A=>B]) = new {
def <*>(as: List[A]) = AppList.ap(fs, as)
}
Now I can do a cool thing !
zip two lists List[String] and apply f2 to every pair in applicative style
val f2: (String, String) => String = {(first, last) => s"$first $last"}
val firsts = List("a", "b", "c")
val lasts = List("x", "y", "z")
scala> AppList.unit(f2.curried) <*> firsts <*> lasts
res31: List[String] = List(a x, a y, a z, b x, b y, b z, c x, c y, c z)
So far, so good but now I have:
val firstsOpt = Some(firsts)
val lastsOpt = Some(lasts)
I would like to zip firsts and lasts, apply f2, and get Option[List[String]] in applicative style. In other words I need <*> for Option[List[_]]. How can I do it ?
Firstly, you need an instance of applicative for Option:
implicit object AppOption extends Applicative[Option] {
def map[A, B](f: A => B, o: Option[A]) = o.map(f)
def unit[A](a: A): Option[A] = Some(a)
def ap[A, B](of: Option[A => B], oa: Option[A]) = of match {
case Some(f) => oa.map(f)
case None => None
}
}
Then you can also create an applicative instance for the composition of two applicatives (note, based on the Haskell version):
class AppComp[F[_], G[_]](fa: Applicative[F], ga: Applicative[G]) extends Applicative[({ type f[A] = F[G[A]]})#f] {
def map[A, B](f: A => B, a: F[G[A]]): F[G[B]] = fa.map((g: G[A]) => ga.map(f, g), a)
def unit[A](a: A) = fa.unit(ga.unit(a))
def ap[A, B](f: F[G[A => B]], a: F[G[A]]): F[G[B]] = {
val liftg: G[A => B] => (G[A] => G[B]) = gf => (gx => ga.ap(gf, gx))
val ffg: F[G[A] => G[B]] = fa.map(liftg, f)
fa.ap(ffg, a)
}
}
implicit def toComp[F[_], G[_]](implicit fa: Applicative[F], ga: Applicative[G]) = new AppComp[F, G](fa, ga)
Finally you can now do:
val ola = toComp[Option, List]
ola.ap(ola.ap(ola.unit(f2.curried), firstsOpt), lastsOpt)
You could probably also remove some of the noise by generalising <*> to work for any applicative.
I occasionally hit code like this:
val things : List[A \/ B] = ???
val (as, bs) : (List[A], List[B]) = ??? //insert something to do this
or in my current case I want Map[A, B \/ C] => (Map[A, B], Map[A, C])
Is there a nice way to do this in the general case F[A \/ B] with appropriate restrictions on F? It looks vaguely like a variation on the theme of Unzip.
Here's how we deal with this for / but also Either and Validation, and not just for Lists, but other Foldable.
object Uncozip {
implicit val wtf = language.higherKinds
// Typeclass which covers sum types such as \/, Either, Validation
trait Sum2[F[_, _]] {
def cata[A, B, X](a: A ⇒ X, b: B ⇒ X)(fab: F[A, B]): X
}
implicit val sumEither: Sum2[Either] = new Sum2[Either] {
def cata[A, B, X](a: A ⇒ X, b: B ⇒ X)(fab: Either[A, B]): X = {
fab match {
case Left(l) ⇒ a(l)
case Right(r) ⇒ b(r)
}
}
}
implicit val sumEitherz: Sum2[\/] = new Sum2[\/] {
def cata[A, B, X](a: A ⇒ X, b: B ⇒ X)(fab: A \/ B): X = {
fab.fold(a(_), b(_))
}
}
implicit val sumValidation: Sum2[Validation] = new Sum2[Validation] {
def cata[A, B, X](a: A ⇒ X, b: B ⇒ X)(fab: A Validation B): X = {
fab.fold(a(_), b(_))
}
}
abstract class Uncozips[F[_], G[_, _], A, B](fab: F[G[A, B]]) {
def uncozip: (F[A], F[B])
}
implicit def uncozip[F[_]: Foldable, G[_, _], A, B](fab: F[G[A, B]])(implicit g: Sum2[G], mfa: ApplicativePlus[F], mfb: ApplicativePlus[F]): Uncozips[F, G, A, B] = new Uncozips[F, G, A, B](fab) {
def uncozip = {
implicitly[Foldable[F]].foldRight[G[A, B], (F[A], F[B])](fab, (mfa.empty, mfb.empty)) { (l, r) ⇒
g.cata[A, B, (F[A], F[B])]({ (a: A) ⇒ (mfa.plus(mfa.point(a), r._1), r._2) },
{ (b: B) ⇒ (r._1, mfa.plus(mfa.point(b), r._2)) })(l)
}
}
}
}
You can map things in to a list of (Option[A], Option[B]), unzip that list in to two lists, and then unite the resulting lists:
import scalaz._
import Scalaz._
val things: List[String \/ Int] = List("foo".left, 42.right)
val (strs, ints): (List[String], List[Int]) = things.
map { d => (d.swap.toOption, d.toOption) }. // List[(Option[String], Option[Int])]
unzip. // (List[Option[String]], List[Option[Int]])
bimap(_.unite, _.unite) // (List[String], List[Int])
This isn't particularly efficient due to traversing the list three times.
Here is one way (for lists):
val things : List[A \/ B] = ???
val (as, bs) = (things.map(_.swap.toList).join, things.map(_.toList).join)
And for a map:
val things: Map[String, String \/ Int] = ???
val (as, bs) = (things.mapValues(_.swap.toList).filterNot(e => e._2.isEmpty),
things.mapValues(_.toList).filterNot(e => e._2.isEmpty))
I'm having a hard time coming up with a way to generalize this over any F (I believe you would need instances of Monoid and Applicative for F).