This is What I tried so far on aggregated query:
db.getCollection('storage').aggregate([
{
"$match": {
"user_id": 2
}
},
{
"$project": {
"formattedDate": {
"$dateToString": { "format": "%Y-%m", "date": "$created_on" }
},
"size": "$size"
}
},
{ "$group": {
"_id" : "$formattedDate",
"size" : { "$sum": "$size" }
} }
])
This is the result:
/* 1 */
{
"_id" : "2018-02",
"size" : NumberLong(10860595386)
}
/* 2 */
{
"_id" : "2017-12",
"size" : NumberLong(524288)
}
/* 3 */
{
"_id" : "2018-01",
"size" : NumberLong(21587971)
}
And this is the document structure:
{
"_id" : ObjectId("5a59efedd006b9036159e708"),
"user_id" : NumberLong(2),
"is_transferred" : false,
"is_active" : false,
"process_id" : NumberLong(0),
"ratio" : 0.000125759169459343,
"type_id" : 201,
"size" : NumberLong(1687911),
"is_processed" : false,
"created_on" : ISODate("2018-01-13T11:39:25.000Z"),
"processed_on" : ISODate("1970-01-01T00:00:00.000Z")
}
And last, the explain result:
/* 1 */
{
"stages" : [
{
"$cursor" : {
"query" : {
"user_id" : 2.0
},
"fields" : {
"created_on" : 1,
"size" : 1,
"_id" : 1
},
"queryPlanner" : {
"plannerVersion" : 1,
"namespace" : "data.storage",
"indexFilterSet" : false,
"parsedQuery" : {
"user_id" : {
"$eq" : 2.0
}
},
"winningPlan" : {
"stage" : "FETCH",
"inputStage" : {
"stage" : "IXSCAN",
"keyPattern" : {
"user_id" : 1
},
"indexName" : "user_id",
"isMultiKey" : false,
"multiKeyPaths" : {
"user_id" : []
},
"isUnique" : false,
"isSparse" : false,
"isPartial" : false,
"indexVersion" : 2,
"direction" : "forward",
"indexBounds" : {
"user_id" : [
"[2.0, 2.0]"
]
}
}
},
"rejectedPlans" : []
}
}
},
{
"$project" : {
"_id" : true,
"formattedDate" : {
"$dateToString" : {
"format" : "%Y-%m",
"date" : "$created_on"
}
},
"size" : "$size"
}
},
{
"$group" : {
"_id" : "$formattedDate",
"size" : {
"$sum" : "$size"
}
}
}
],
"ok" : 1.0
}
The problem:
I can navigate and get all results in almost instantly like in 0,002sec. However, when I specify user_id and sum them by grouping on each month, My result came in between 0,300s to 0,560s. I do similar tasks in one request and it becaomes more than a second to finish.
What I tried so far:
I've added an index for user_id
I've added an index for created_on
I used more $match conditions. However, This makes even worse.
This collection have almost 200,000 documents in it currently and approximately 150,000 of them are belongs to user_id = 2
How can I minimize the response time for this query?
Note: MongoDB 3.4.10 used.
Pratha,
try to add sort on "created_on" and "size" fields as the first stage in aggregation pipeline.
db.getCollection('storage').aggregate([
{
"$sort": {
"created_on": 1, "size": 1
}
}, ....
Before that, add compound key index:
db.getCollection('storage').createIndex({created_on:1,size:1})
If you sort data before the $group stage, it will improve the efficiency of accumulation of the totals.
Note about sort aggregation stage:
The $sort stage has a limit of 100 megabytes of RAM. By default, if the stage exceeds this limit, $sort will produce an error. To allow for the handling of large datasets, set the allowDiskUse option to true to enable $sort operations to write to temporary files.
P.S
get rid of match stage by userID to test performance, or add userID to compound key also.
Related
I have an aggregation query in MongoDB:
[{
$group: {
_id: '$status',
status: {
$sum: 1
}
}
}]
It is running on a collection that has ~80 million documents. The status field is indexed, yet the query is very slow and runs for around 60 seconds or more.
I did an explain() on the query, but still got almost nowhere:
{
"explainVersion" : "1",
"stages" : [
{
"$cursor" : {
"queryPlanner" : {
"namespace" : "loa.document",
"indexFilterSet" : false,
"parsedQuery" : {
},
"queryHash" : "B9878693",
"planCacheKey" : "8EAA28C6",
"maxIndexedOrSolutionsReached" : false,
"maxIndexedAndSolutionsReached" : false,
"maxScansToExplodeReached" : false,
"winningPlan" : {
"stage" : "PROJECTION_SIMPLE",
"transformBy" : {
"status" : 1,
"_id" : 0
},
"inputStage" : {
"stage" : "COLLSCAN",
"direction" : "forward"
}
},
"rejectedPlans" : [ ]
}
}
},
{
"$group" : {
"_id" : "$status",
"status" : {
"$sum" : {
"$const" : 1
}
}
}
}
],
"serverInfo" : {
"host" : "rack-compute-2",
"port" : 27017,
"version" : "5.0.6",
"gitVersion" : "212a8dbb47f07427dae194a9c75baec1d81d9259"
},
"serverParameters" : {
"internalQueryFacetBufferSizeBytes" : 104857600,
"internalQueryFacetMaxOutputDocSizeBytes" : 104857600,
"internalLookupStageIntermediateDocumentMaxSizeBytes" : 104857600,
"internalDocumentSourceGroupMaxMemoryBytes" : 104857600,
"internalQueryMaxBlockingSortMemoryUsageBytes" : 104857600,
"internalQueryProhibitBlockingMergeOnMongoS" : 0,
"internalQueryMaxAddToSetBytes" : 104857600,
"internalDocumentSourceSetWindowFieldsMaxMemoryBytes" : 104857600
},
"command" : {
"aggregate" : "document",
"pipeline" : [
{
"$group" : {
"_id" : "$status",
"status" : {
"$sum" : 1
}
}
}
],
"explain" : true,
"cursor" : {
},
"lsid" : {
"id" : UUID("a07e17fe-65ff-4d38-966f-7517b7a5d3f2")
},
"$db" : "loa"
},
"ok" : 1
}
I see that it does a full COLLSCAN, I just can't understand why.
I plan on supporting a couple hundred million (or even a billion) documents in that collection, but this problem hijacks my plans for seemingly no reason.
You can advice the query planner to use the index as follow:
db.test.explain("executionStats").aggregate(
[
{$group:{ _id:"$status" ,status:{$sum:1} }}
],
{hint:"status_1"}
)
Make sure the index name in the hint is same as created ...
(db.test.getIndexes() will show you the exact index name )
I have a collection with ~2.5m documents, the collection size is 14,1GB, storage size 4.2GB and average object size 5,8KB. I created two separate indexes on two of the fields dataSourceName and version (text fields) and tried to make an aggregate query to list their 'grouped by' values.
(Trying to achieve this: select dsn, v from collection group by dsn, v).
db.getCollection("the-collection").aggregate(
[
{
"$group" : {
"_id" : {
"dataSourceName" : "$dataSourceName",
"version" : "$version"
}
}
}
],
{
"allowDiskUse" : false
}
);
Even though MongoDB eats ~10GB RAM on the server, the fields are indexed and nothing else is running at all, the aggregation takes ~40 seconds.
I tried to make a new index, which contains both fields in order, but still, the query does not seem to use the index:
{
"stages" : [
{
"$cursor" : {
"query" : {
},
"fields" : {
"dataSourceName" : NumberInt(1),
"version" : NumberInt(1),
"_id" : NumberInt(0)
},
"queryPlanner" : {
"plannerVersion" : NumberInt(1),
"namespace" : "db.the-collection",
"indexFilterSet" : false,
"parsedQuery" : {
},
"winningPlan" : {
"stage" : "COLLSCAN",
"direction" : "forward"
},
"rejectedPlans" : [
]
}
}
},
{
"$group" : {
"_id" : {
"dataSourceName" : "$dataSourceName",
"version" : "$version"
}
}
}
],
"ok" : 1.0
}
I am using MongoDB 3.6.5 64bit on Windows, so it should use the indexes: https://docs.mongodb.com/master/core/aggregation-pipeline/#pipeline-operators-and-indexes
As #Alex-Blex suggested, I tried it with sorting, but I an get OOM error:
The following error occurred while attempting to execute the aggregate query
Mongo Server error (MongoCommandException): Command failed with error 16819: 'Sort exceeded memory limit of 104857600 bytes, but did not opt in to external sorting. Aborting operation. Pass allowDiskUse:true to opt in.' on server server-address:port.
The full response is:
{
"ok" : 0.0,
"errmsg" : "Sort exceeded memory limit of 104857600 bytes, but did not opt in to external sorting. Aborting operation. Pass allowDiskUse:true to opt in.",
"code" : NumberInt(16819),
"codeName" : "Location16819"
}
My bad, I tried it on the wrong collection... Adding the same sort as the index works, now it is using the index. Still not fast thought, took ~10 seconds to give me the results.
The new exaplain:
{
"stages" : [
{
"$cursor" : {
"query" : {
},
"sort" : {
"dataSourceName" : NumberInt(1),
"version" : NumberInt(1)
},
"fields" : {
"dataSourceName" : NumberInt(1),
"version" : NumberInt(1),
"_id" : NumberInt(0)
},
"queryPlanner" : {
"plannerVersion" : NumberInt(1),
"namespace" : "....",
"indexFilterSet" : false,
"parsedQuery" : {
},
"winningPlan" : {
"stage" : "PROJECTION",
"transformBy" : {
"dataSourceName" : NumberInt(1),
"version" : NumberInt(1),
"_id" : NumberInt(0)
},
"inputStage" : {
"stage" : "IXSCAN",
"keyPattern" : {
"dataSourceName" : NumberInt(1),
"version" : NumberInt(1)
},
"indexName" : "dataSourceName_1_version_1",
"isMultiKey" : false,
"multiKeyPaths" : {
"dataSourceName" : [
],
"version" : [
]
},
"isUnique" : false,
"isSparse" : false,
"isPartial" : false,
"indexVersion" : NumberInt(2),
"direction" : "forward",
"indexBounds" : {
"dataSourceName" : [
"[MinKey, MaxKey]"
],
"version" : [
"[MinKey, MaxKey]"
]
}
}
},
"rejectedPlans" : [
]
}
}
},
{
"$group" : {
"_id" : {
"dataSourceName" : "$dataSourceName",
"version" : "$version"
}
}
}
],
"ok" : 1.0
}
The page you are referring to says exactly opposite:
The $match and $sort pipeline operators can take advantage of an index
Your first stage is $group, which is neither $match nor $sort.
Try to sort it on the first stage to trigger use of the index:
db.getCollection("the-collection").aggregate(
[
{ $sort: { dataSourceName:1, version:1 } },
{
"$group" : {
"_id" : {
"dataSourceName" : "$dataSourceName",
"version" : "$version"
}
}
}
],
{
"allowDiskUse" : false
}
);
Please note, it should be a single compound index with the same fields and sorting:
db.getCollection("the-collection").createIndex({ dataSourceName:1, version:1 })
I have a collection with millions of documents, each document represent an event: {_id, product, timestamp}
In my query, I need to group by product and take the top 10 for example.
"aggregate" : "product_events",
"pipeline" : [
{
"$match" : {
"timeEvent" : {
"$gt" : ISODate("2017-07-17T00:00:00Z")
}
}
},
{
"$group" : {
"_id" : "$product",
"count" : {
"$sum" : 1
}
}
},
{
"$sort" : {
"count" : -1
}
},
{
"$limit" : 10
}
]
My query is very slow now (10 seconds), I am wondering if there is a way to store data differently to optimise this query?
db.product_events.explain("executionStats").aggregate([ {"$match" :
{"timeEvent" : {"$gt" : ISODate("2017-07-17T00:00:00Z")}}},{"$group" :
{"_id" : "$product","count" : {"$sum" : 1}}}, {"$project": {"_id": 1,
"count": 1}} , {"$sort" : {"count" : -1}},{"$limit" : 500}],
{"allowDiskUse": true})
{
"stages" : [
{
"$cursor" : {
"query" : {
"timeEvent" : {
"$gt" : ISODate("2017-07-17T00:00:00Z")
}
},
"fields" : {
"product" : 1,
"_id" : 0
},
"queryPlanner" : {
"plannerVersion" : 1,
"namespace" : "mydb.product_events",
"indexFilterSet" : false,
"parsedQuery" : {
"timeEvent" : {
"$gt" : ISODate("2017-07-17T00:00:00Z")
}
},
"winningPlan" : {
"stage" : "COLLSCAN",
"filter" : {
"timeEvent" : {
"$gt" : ISODate("2017-07-17T00:00:00Z")
}
},
"direction" : "forward"
},
"rejectedPlans" : [ ]
},
"executionStats" : {
"executionSuccess" : true,
"nReturned" : 2127315,
"executionTimeMillis" : 940,
"totalKeysExamined" : 0,
"totalDocsExamined" : 2127315,
"executionStages" : {
"stage" : "COLLSCAN",
"filter" : {
"timeEvent" : {
"$gt" : ISODate("2017-07-17T00:00:00Z")
}
},
"nReturned" : 2127315,
"executionTimeMillisEstimate" : 810,
"works" : 2127317,
"advanced" : 2127315,
"needTime" : 1,
"needYield" : 0,
"saveState" : 16620,
"restoreState" : 16620,
"isEOF" : 1,
"invalidates" : 0,
"direction" : "forward",
"docsExamined" : 2127315
}
}
}
},
{
"$group" : {
"_id" : "$product",
"count" : {
"$sum" : {
"$const" : 1
}
}
}
},
{
"$project" : {
"_id" : true,
"count" : true
}
},
{
"$sort" : {
"sortKey" : {
"count" : -1
},
"limit" : NumberLong(500)
}
}
],
"ok" : 1
}
Below my indexes
db.product_events.getIndexes()
[
{
"v" : 2,
"key" : {
"_id" : 1
},
"name" : "_id_",
"ns" : "mydb.product_events"
},
{
"v" : 2,
"key" : {
"product" : 1,
"timeEvent" : -1
},
"name" : "product_1_timeEvent_-1",
"ns" : "mydb.product_events"
}
]
Creating indexes on fields of a collection aids into optimising process of data retrieval from database collections.
Indexes are generally created on fields into which data are filtered according to specific criteria.
Data contained into indexed fields are sorted in specific order and while fetching data once match is found ,scanning of other document stops which makes process of fetching data faster.
According to description as mentioned into above question to optimise performance of aggregate query please try creating an index on timeEvent field as timeEvent field is used as a filter expression into $match stage of aggregation pipeline.
The documentation on compound indexes states the following.
db.products.createIndex( { "item": 1, "stock": 1 } )
The order of the fields listed in a compound index is important. The
index will contain references to documents sorted first by the values
of the item field and, within each value of the item field, sorted by
values of the stock field.
In addition to supporting queries that match on all the index fields,
compound indexes can support queries that match on the prefix of the
index fields. That is, the index supports queries on the item field as
well as both item and stock fields.
Your product_1_timeEvent_-1 index looks like this:
{
"product" : 1,
"timeEvent" : -1
}
which is why it cannot be used to support a query that only filters on timeEvent.
Options you have to get that sorted:
Flip the order of the fields in your index
Remove the product field from your index
Create an additional index with only the timeEvent field in it.
(Include some additional filter on the product field so the existing index gets used)
And keep in mind that any creation/deletion/modification of an index may impact other queries, too. So make sure you test your changes properly.
I have the following table :
> db.foo.find()
{ "_id" : 1, "k" : [ { "a" : 50, "b" : 10 } ] }
{ "_id" : 2, "k" : [ { "a" : 90, "b" : 80 } ] }
With an compound index on k field :
"key" : {
"k.a" : 1,
"k.b" : 1
},
"name" : "k.a_1_k.b_1"
If I run the following query :
db.foo.aggregate([
{ $match: { "k.a" : 50 } },
{ $project: { _id : 0, "dummy": {$literal:""} }}
])
The index if used (make sense) and there is no need of FETCH stage :
"winningPlan" : {
"stage" : "COUNT_SCAN",
"keyPattern" : {
"k.a" : 1,
"k.b" : 1
},
"indexName" : "k.a_1_k.b_1",
"isMultiKey" : false,
"multiKeyPaths" : {
"k.a" : [ ],
"k.b" : [ ]
},
"isUnique" : false,
"isSparse" : false,
"isPartial" : false,
"indexVersion" : 2,
"indexBounds" : {
"startKey" : {
"k.a" : 50,
"k.b" : { "$minKey" : 1 }
},
"startKeyInclusive" : true,
"endKey" : {
"k.a" : 50,
"k.b" : { "$maxKey" : 1 }
},
"endKeyInclusive" : true
}
}
However, If I run the following query that use $elemMatch :
db.foo.aggregate([
{ $match: { k: {$elemMatch: {a : 50, b : { $in : [5, 6, 10]}}}} },
{ $project: { _id : 0, "dummy" : {$literal : ""}} }
])
There is a FETCH stage (which AFAIK is not necessary) :
"winningPlan" : {
"stage" : "FETCH",
"filter" : {
"k" : {
"$elemMatch" : {
"$and" : [
{ "a" : { "$eq" : 50 } },
{ "b" : { "$in" : [ 5, 6, 10 ] } }
]
}
}
},
"inputStage" : {
"stage" : "IXSCAN",
"keyPattern" : {
"k.a" : 1,
"k.b" : 1
},
"indexName" : "k.a_1_k.b_1",
"isMultiKey" : false,
"multiKeyPaths" : {
"k.a" : [ ],
"k.b" : [ ]
},
"isUnique" : false,
"isSparse" : false,
"isPartial" : false,
"indexVersion" : 2,
"direction" : "forward",
"indexBounds" : {
"k.a" : [
"[50.0, 50.0]"
],
"k.b" : [
"[5.0, 5.0]",
"[6.0, 6.0]",
"[10.0, 10.0]"
]
}
}
},
I am using MongoDB 3.4.
I ask this because I have a DB with lot of documents and there is a query that use aggregate() and $elemMatch (it perform more useful things than projecting nothing as in this question OFC, but theoretically things does not require a FETCH stage). I found out main reason of query being slow if is the FETCH stage, which AFAIK is not needed.
Is there some logic that force MongoDB to use FETCH when $elemMatch is used, or is it just a missing optimization ?
Looks like even a single "$elemMatch" forces mongo to do FETCH -> COUNT instead of COUNT_SCAN. Opened a ticket in their Jira with simple steps to reproduce - https://jira.mongodb.org/browse/SERVER-35223
TLDR: this is the expected behaviour of a multikey index combined with an $elemMatch.
From the covered query section of the multikey index documents:
Multikey indexes cannot cover queries over array field(s).
Meaning all information about a sub-document is not in the multikey index.
Let's imagine the following scenario:
//doc1
{
"k" : [ { "a" : 50, "b" : 10 } ]
}
//doc2
{
"k" : { "a" : 50, "b" : 10 }
}
Because Mongo "flattens" the array it indexes, once the index is built Mongo cannot differentiate between these 2 documents, $elemMatch specifically requires an array object to match (i.e doc2 will never match an $elemMatch query).
Meaning Mongo is forced to FETCH the documents to determine which docs will match, this is the premise causing the behaviour you see.
I am new to Mongo and was trying to get distinct count of users. The field Id and Status are not individually Indexed columns but there exists a composite index on both the field. My current query is something like this where the match conditions changes depending on the requirements.
DBQuery.shellBatchSize = 1000000;
db.getCollection('username').aggregate([
{$match:
{ Status: "A"
} },
{"$group" : {_id:"$Id", count:{$sum:1}}}
]);
Is there anyway we can optimize this query more or add parallel runs on collection so that we can achieve results faster ?
Regards
You can tune your aggregation pipelines by passing in an option of explain=true in the aggregate method.
db.getCollection('username').aggregate([
{$match: { Status: "A" } },
{"$group" : {_id:"$Id", count:{$sum:1}}}],
{ explain: true });
This will then output the following to work with
{
"stages" : [
{
"$cursor" : {
"query" : {
"Status" : "A"
},
"fields" : {
"Id" : 1,
"_id" : 0
},
"queryPlanner" : {
"plannerVersion" : 1,
"namespace" : "test.usernames",
"indexFilterSet" : false,
"parsedQuery" : {
"Status" : {
"$eq" : "A"
}
},
"winningPlan" : {
"stage" : "EOF"
},
"rejectedPlans" : [ ]
}
}
},
{
"$group" : {
"_id" : "$Id",
"count" : {
"$sum" : {
"$const" : 1
}
}
}
}
],
"ok" : 1
}
So to speed up our query we need a index to help the match part of the pipeline, so let's create a index on Status
> db.usernames.createIndex({Status:1})
{
"createdCollectionAutomatically" : true,
"numIndexesBefore" : 1,
"numIndexesAfter" : 2,
"ok" : 1
}
If we now run the explain again we'll get the following results
{
"stages" : [
{
"$cursor" : {
"query" : {
"Status" : "A"
},
"fields" : {
"Id" : 1,
"_id" : 0
},
"queryPlanner" : {
"plannerVersion" : 1,
"namespace" : "test.usernames",
"indexFilterSet" : false,
"parsedQuery" : {
"Status" : {
"$eq" : "A"
}
},
"winningPlan" : {
"stage" : "FETCH",
"inputStage" : {
"stage" : "IXSCAN",
"keyPattern" : {
"Status" : 1
},
"indexName" : "Status_1",
"isMultiKey" : false,
"multiKeyPaths" : {
"Status" : [ ]
},
"isUnique" : false,
"isSparse" : false,
"isPartial" : false,
"indexVersion" : 2,
"direction" : "forward",
"indexBounds" : {
"Status" : [
"[\"A\", \"A\"]"
]
}
}
},
"rejectedPlans" : [ ]
}
}
},
{
"$group" : {
"_id" : "$Id",
"count" : {
"$sum" : {
"$const" : 1
}
}
}
}
],
"ok" : 1
}
We can now see straight away this is using a index.
https://docs.mongodb.com/manual/reference/explain-results/