I have a dataframe with content like below:
scala> patDF.show
+---------+-------+-----------+-------------+
|patientID| name|dateOtBirth|lastVisitDate|
+---------+-------+-----------+-------------+
| 1001|Ah Teck| 1991-12-31| 2012-01-20|
| 1002| Kumar| 2011-10-29| 2012-09-20|
| 1003| Ali| 2011-01-30| 2012-10-21|
+---------+-------+-----------+-------------+
all the columns are string
I want to get the list of records with lastVisitDate falling in the range of format of yyyy-mm-dd and now, so here is the script:
patDF.registerTempTable("patients")
val results2 = sqlContext.sql("SELECT * FROM patients WHERE from_unixtime(unix_timestamp(lastVisitDate, 'yyyy-mm-dd')) between '2012-09-15' and current_timestamp() order by lastVisitDate")
results2.show()
It gets me nothing, presumably, there should be records with patientID of 1002 and 1003.
So I modified the query to:
val results3 = sqlContext.sql("SELECT from_unixtime(unix_timestamp(lastVisitDate, 'yyyy-mm-dd')), * FROM patients")
results3.show()
Now I get:
+-------------------+---------+-------+-----------+-------------+
| _c0|patientlD| name|dateOtBirth|lastVisitDate|
+-------------------+---------+-------+-----------+-------------+
|2012-01-20 00:01:00| 1001|Ah Teck| 1991-12-31| 2012-01-20|
|2012-01-20 00:09:00| 1002| Kumar| 2011-10-29| 2012-09-20|
|2012-01-21 00:10:00| 1003| Ali| 2011-01-30| 2012-10-21|
+-------------------+---------+-------+-----------+-------------+
If you look at the first column, you will see all the months were somehow changed to 01
What's wrong with the code?
The correct format for year-month-day should be yyyy-MM-dd:
val patDF = Seq(
(1001, "Ah Teck", "1991-12-31", "2012-01-20"),
(1002, "Kumar", "2011-10-29", "2012-09-20"),
(1003, "Ali", "2011-01-30", "2012-10-21")
)toDF("patientID", "name", "dateOtBirth", "lastVisitDate")
patDF.createOrReplaceTempView("patTable")
val result1 = spark.sqlContext.sql("""
select * from patTable where to_timestamp(lastVisitDate, 'yyyy-MM-dd')
between '2012-09-15' and current_timestamp() order by lastVisitDate
""")
result1.show
// +---------+-----+-----------+-------------+
// |patientID| name|dateOtBirth|lastVisitDate|
// +---------+-----+-----------+-------------+
// | 1002|Kumar| 2011-10-29| 2012-09-20|
// | 1003| Ali| 2011-01-30| 2012-10-21|
// +---------+-----+-----------+-------------+
You can also use DataFrame API, if wanted:
val result2 = patDF.where(to_timestamp($"lastVisitDate", "yyyy-MM-dd").
between(to_timestamp(lit("2012-09-15"), "yyyy-MM-dd"), current_timestamp())
).orderBy($"lastVisitDate")
Related
I have a spark dataframe : df :
|id | year | month |
-------------------
| 1 | 2020 | 01 |
| 2 | 2019 | 03 |
| 3 | 2020 | 01 |
I have a sequence year_month = Seq[(2019,01),(2020,01),(2021,01)]
val year_map gets genrated dynamically based on code runs everytime
I want to filter the dataframe : df based on the year_month sequence for on ($year=seq[0] & $month = seq[1]) for each value pair in sequence year_month
You can achieve this by
Create a dataframe from year_month
Perform an inner join on year_month with your original dataframe on month and year
Choosing distinct records
The resulting dataframe will be the matched rows
Working Example
Setup
import spark.implicits._
val dfData = Seq((1,2020,1),(2,2019,3),(3,2020,1))
val df = dfData.toDF()
.selectExpr("_1 as id"," _2 as year","_3 as month")
df.createOrReplaceTempView("original_data")
val year_month = Seq((2019,1),(2020,1),(2021,1))
Step 1
// Create Temporary DataFrame
val yearMonthDf = year_month.toDF()
.selectExpr("_1 as year","_2 as month" )
yearMonthDf.createOrReplaceTempView("temp_year_month")
Step 2
var dfResult = spark.sql("select o.id, o.year, o.month from original_data o inner join temp_year_month t on o.year = t.year and o.month = t.month")
Step3
var dfResultDistinct = dfResult.distinct()
Output
dfResultDistinct.show()
+---+----+-----+
| id|year|month|
+---+----+-----+
| 1|2020| 1|
| 3|2020| 1|
+---+----+-----+
NB. If you are interested in finding the similar records that exist irrespective of the id. You could update the spark sql to the following (it has removed o.id)
select
o.year,
o.month
from
original_data o
inner join
temp_year_month t on o.year = t.year and
o.month = t.month
which would give as the result
+----+-----+
|year|month|
+----+-----+
|2020| 1|
+----+-----+
I have a UDF that creates a timestamp out of 2 field values with date and time. However, the field with time is of seconds format.
So how сan I merge 2 fields of type date and seconds into an hour of a type Unix timestamp?
My current implementation looks like this:
private val unix_epoch = udf[Long, String, String]{ (date, time) =>
deltaDateFormatter.parseDateTime(s"$date $formatted").getSeconds
}
def transform(inputDf: DataFrame): Unit = {
inputDf
.withColumn("event_hour", unix_epoch($"event_date", $"event_time"))
.withColumn("event_ts", from_unixtime($"event_hour").cast(TimestampType))
}
Input data:
event_date,event_time
20170501,87721
20170501,87728
20170501,87721
20170501,87726
Desired output:
event_tmstp, event_hour
2017-05-01 00:22:01,1493598121
2017-05-01 00:22:08,1493598128
2017-05-01 00:22:01,1493598121
2017-05-01 00:22:06,1493598126
Update. data schema:
event_date: string (nullable = true)
event_time: integer (nullable = true)
Cast event_date to a unix timestamp, add the event_time column to get event_hour, and convert back to normal timestamp event_tmstp.
PS I'm not sure why event_time has 86400 seconds (1 day) more. I needed to subtract that to get your expected output.
val df = Seq(
("20170501", 87721),
("20170501", 87728),
("20170501", 87721),
("20170501", 87726)
).toDF("event_date","event_time")
val df2 = df.select(
unix_timestamp(to_date($"event_date", "yyyyMMdd")) + $"event_time" - 86400
).toDF("event_hour").select(
$"event_hour".cast("timestamp").as("event_tmstp"),
$"event_hour"
)
df2.show
+-------------------+----------+
| event_tmstp|event_hour|
+-------------------+----------+
|2017-05-01 00:22:01|1493598121|
|2017-05-01 00:22:08|1493598128|
|2017-05-01 00:22:01|1493598121|
|2017-05-01 00:22:06|1493598126|
+-------------------+----------+
Check below code if this helps without UDF
val df = Seq(
(20170501,87721),
(20170501,87728),
(20170501,87721),
(20170501,87726)
).toDF("date","time")
df
.withColumn("date",
to_date(
unix_timestamp($"date".cast("string"),
"yyyyMMdd"
).cast("timestamp")
)
)
.withColumn(
"event_hour",
unix_timestamp(
concat_ws(
" ",
$"date",
from_unixtime($"time","HH:mm:ss.S")
).cast("timestamp")
)
)
.withColumn(
"event_ts",
from_unixtime($"event_hour")
)
.show(false)
+----------+-----+----------+-------------------+
|date |time |event_hour|event_ts |
+----------+-----+----------+-------------------+
|2017-05-01|87721|1493598121|2017-05-01 00:22:01|
|2017-05-01|87728|1493598128|2017-05-01 00:22:08|
|2017-05-01|87721|1493598121|2017-05-01 00:22:01|
|2017-05-01|87726|1493598126|2017-05-01 00:22:06|
+----------+-----+----------+-------------------+
Task: Get data types of a table (in hive) and the average length of values of each column.
I'm trying to do the above task in spark using scala.
Firstly I did
val table = spark.sql("desc table")
The output has three columns, col_name, datatype, comment.
And then, I tried to get only the column values as a comma-separated string.
val col_string = table.select("col_name").rdd.map(i => "avg(length(trim("+i(0).toString+")))").collect.mkString(", ")
Now, I can use this string in another query to get the average length of all columns like given below, but the output dataframe has as many numbers of columns as the table, I don't know how to join it with the table dataframe.
val tbl_length = spark.sql("select " + col_string + " from schema.table")
I've looked at transposing the second dataframe, that looks not efficient, and hard for me to grasp as a beginner in spark and scala.
Is my method above is good/efficient one? if there is a better way please suggest.
Even if there is a better way, can you also please explain how I can join two such datasets of row=>column.
Input table:
col1| col2| col3
Ac| 123| 0
Defg| 23456| 0
Expected output
column_name| data_type| avg_length
col1| String| 3
col2| Int| 4
col3| Int| 1
Try this-
val table = spark.catalog.getTable("df")
val df = spark.sql(s"select * from ${table.name}")
df.show(false)
/**
* +---+----+
* |id |name|
* +---+----+
* |1 |abc1|
* |2 |abc2|
* |3 |abc3|
* +---+----+
*/
val aggs = df.columns.map(f => avg(length(trim(col(f)))).as(f))
val values = df.agg(aggs.head, aggs.tail: _*).head.getValuesMap[Double](df.columns).values.toSeq
df.schema.map(sf => (sf.name, sf.dataType)).zip(values).map{ case ((name, dt), value) => (name, dt.simpleString, value)}
.toDF("column_name", "data_type", "avg_length")
.show(false)
/**
* +-----------+---------+----------+
* |column_name|data_type|avg_length|
* +-----------+---------+----------+
* |id |bigint |1.0 |
* |name |string |4.0 |
* +-----------+---------+----------+
*/
I have a date and want to add and subtract 10 days to it. Start_date and end_date are dynamic variables from one table and will be used to filter another table.
eg.
val start_date = "2018-09-08"
val end_date = "2018-09-15"
I want to use the two dates above in a filter shown below;
myDF.filter($"timestamp".between(date_sub(start_date, 10),date_add(end_date, 10)))
The functions date_add and date_sub only take in columns as an input. How can I add/subtract 10 (this is an arbitrary number) from my dates?
Thanks
Thank you Luis! Your solution worked, for anyone interested the solution looks like;
val start_date = lit("2018-09-08")
val end_date = lit("2018-09-15")
myDF.filter($"timestamp".between(date_sub(start_date, 10),date_add(end_date, 10)))
Another way...If you can create a temp view, then you can access the vals using $ interpolation.
You should make sure the format is of default ones for date/timestamp.
Check this out:
scala> val start_date = "2018-09-08"
start_date: String = 2018-09-08
scala> val end_date = "2018-09-15"
end_date: String = 2018-09-15
scala> val myDF=Seq(("2018-09-08"),("2018-09-15")).toDF("timestamp").withColumn("timestamp",to_timestamp('timestamp))
myDF: org.apache.spark.sql.DataFrame = [timestamp: timestamp]
scala> myDF.show(false)
+-------------------+
|timestamp |
+-------------------+
|2018-09-08 00:00:00|
|2018-09-15 00:00:00|
+-------------------+
scala> myDF.createOrReplaceTempView("ts_table")
scala> spark.sql(s""" select timestamp, date_sub('$start_date',10) as d_sub, date_add('$end_date',10) d_add from ts_table """).show(false)
+-------------------+----------+----------+
|timestamp |d_sub |d_add |
+-------------------+----------+----------+
|2018-09-08 00:00:00|2018-08-29|2018-09-25|
|2018-09-15 00:00:00|2018-08-29|2018-09-25|
+-------------------+----------+----------+
scala>
I am trying to calculate the Date Diff between a column field and current date of the system.
Here is my sample code where I have hard coded the my column field with 20170126.
val currentDate = java.time.LocalDate.now
var datediff = spark.sqlContext.sql("""Select datediff(to_date('$currentDate'),to_date(DATE_FORMAT(CAST(unix_timestamp( cast('20170126' as String), 'yyyyMMdd') AS TIMESTAMP), 'yyyy-MM-dd'))) AS GAP
""")
datediff.show()
Output is like:
+----+
| GAP|
+----+
|null|
+----+
I need to calculate actual Gap Between the two dates but getting NULL.
You have not defined the type and format of "column field" so I assume it's a string in the (not-very-pleasant) format YYYYMMdd.
val records = Seq((0, "20170126")).toDF("id", "date")
scala> records.show
+---+--------+
| id| date|
+---+--------+
| 0|20170126|
+---+--------+
scala> records
.withColumn("year", substring($"date", 0, 4))
.withColumn("month", substring($"date", 5, 2))
.withColumn("day", substring($"date", 7, 2))
.withColumn("d", concat_ws("-", $"year", $"month", $"day"))
.select($"id", $"d" cast "date")
.withColumn("datediff", datediff(current_date(), $"d"))
.show
+---+----------+--------+
| id| d|datediff|
+---+----------+--------+
| 0|2017-01-26| 83|
+---+----------+--------+
PROTIP: Read up on functions object.
Caveats
cast
Please note that I could not convince Spark SQL to cast the column "date" to DateType given the rules in DateTimeUtils.stringToDate:
yyyy,
yyyy-[m]m
yyyy-[m]m-[d]d
yyyy-[m]m-[d]d
yyyy-[m]m-[d]d *
yyyy-[m]m-[d]dT*
date_format
I could not convince date_format to work either so I parsed "date" column myself using substring and concat_ws functions.