Dataframes scala.reflect.api.JavaUniverse.runtimeMirror(Ljava/lang/ClassLoader;) error - scala

when I run a normal wordcount program(with below code) with out any Dataframe included I am able run the application with spark-submit.
object wordCount {
def main(args: Array[String]): Unit = {
val logFile= "path/thread.txt"
val sparkConf = new SparkConf().setAppName("Spark Word Count")
val sc = new SparkContext(sparkConf)
val file = sc.textFile(logFile)
val counts = file.flatMap(_.split(" ")).map(word => (word, 1)).reduceByKey(_ + _)
counts.saveAsTextFile("path/output1234")
sc.stop()
}
}
But when I run the below code
import scala.reflect.runtime.universe
import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import org.apache.spark.rdd.RDD.rddToPairRDDFunctions
object wordCount {
def main(args: Array[String]): Unit = {
val logFile = "path/thread.txt"
val sparkConf = new SparkConf().setAppName("Spark Word Count")
val sc = new SparkContext(sparkConf)
val file = sc.textFile(logFile)
val counts = file.flatMap(_.split(" ")).map(word => (word, 1)).reduceByKey(_ + _)
case class count1(key:String,value:Int)
val sqlContext = new org.apache.spark.sql.SQLContext(sc)
import sqlContext.implicits._;
counts.toDF.registerTempTable("count1")
val counts1 = sqlContext.sql("select * from count1")
counts.saveAsTextFile("path/output1234")
sc.stop()
}
}
I am getting the below error:
Exception in thread "main" java.lang.NoSuchMethodError: scala.reflect.api.JavaUniverse.runtimeMirror(Ljava/lang/ClassLoader;)Lscala/reflect/api/JavaMirrors$JavaMirror;
at com.cadillac.spark.sparkjob.wordCount$.main(wordCount.scala:18)
I am not sure what I am missing.
Pom.xml I am using is as below,
<name>sparkjob</name>
<url>http://maven.apache.org</url>
<properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
</properties>
<dependencies>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>3.8.1</version>
<scope>test</scope>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.10</artifactId>
<version>1.6.1</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_2.10</artifactId>
<version>1.6.1</version>
</dependency>
<dependency>
<groupId>org.scala-tools</groupId>
<artifactId>maven-scala-plugin</artifactId>
<version>2.10</version>
</dependency>
</dependencies>
</project>
Please suggest any changes.
My cluster is with
spark-version 2.1.0-mapr-1703
Scala version 2.11.8
Thanks in advance

If you go to this documentation the reason for the error is defined there as
This means that there is a mix of Scala versions in the libraries used in your code. The collection API is different between Scala 2.10 and 2.11 and this the most common error which occurs if a Scala 2.10 library is attempted to be loaded in a Scala 2.11 runtime. To fix this make sure that the name has the correct Scala version suffix to match your Scala version.
So changing your dependencies from
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.10</artifactId>
<version>1.6.1</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_2.10</artifactId>
<version>1.6.1</version>
</dependency>
to
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.11</artifactId>
<version>2.1.0</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_2.11</artifactId>
<version>2.1.0</version>
</dependency>
and add one more dependency
<!-- https://mvnrepository.com/artifact/org.scala-lang/scala-library -->
<dependency>
<groupId>org.scala-lang</groupId>
<artifactId>scala-library</artifactId>
<version>2.11.8</version>
</dependency>
I guess the error should go away

Related

Cannot resolve symbol read in org.apache.spark.read

What is the problem with following code in scala spark?
import org.apache.spark
// ...
val path in = "D:\\myfolder\\myfile.csv"
spark.read(pathIn).csv()
error: cannot resolve symbol "read"
pom.xml dependencies:
<properties>
<maven.compiler.source>1.8</maven.compiler.source>
<maven.compiler.target>1.8</maven.compiler.target>
<encoding>UTF-8</encoding>
<scala.version>2.12.1</scala.version>
<scala.compat.version>2.12</scala.compat.version>
</properties>
<dependencies>
<dependency>
<groupId>org.scala-lang</groupId>
<artifactId>scala-library</artifactId>
<version>2.12.1</version>
</dependency>
<dependency>
<groupId>org.scalatest</groupId>
<artifactId>scalatest_2.12</artifactId>
<version>3.0.8</version>
</dependency>
<!-- https://mvnrepository.com/artifact/org.apache.spark/spark-core -->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.12</artifactId>
<version>2.4.4</version>
</dependency>
</dependencies>
I have added some dependencies cuz can't import SparkSession.
Please use following. You need spark-core and spark-sql as dependencies.
import org.apache.spark.sql.SparkSession
val spark : SparkSession = SparkSession.builder
.appName("test")
.master("local[2]")
.getOrCreate()
import spark.implicits._
val pathIn = "D:\\myfolder\\myfile.csv"
spark.read.csv(pathIn).show()

scala -object sql is not a member of package org.apache.spark

When i am trying to build maven project in eclipse IDE based on scala nature.
Getting error
object sql is not a member of package org.apache.spark
We tried
Adding this dependency in pom.xml
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_2.11</artifactId>
<version>1.6.0</version>
</dependency>
Input code
import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import org.apache.spark.streaming.kafka.KafkaUtils
import org.apache.spark.streaming.Seconds
import org.apache.spark.streaming.StreamingContext
object MyApp {
def main(args: Array[String]) {
//Read from KAFKA TOPIC
val conf = new SparkConf().setMaster("local[*]").setAppName("Spark-Kafk-Integration")
val sc = new SparkContext(conf)
val ssc = new StreamingContext(sc, Seconds(5))
val kafkaStream = KafkaUtils.createStream(ssc, "hostname:2181", "spark-streaming-consumer-group", Map("test4" -> 1))
val sqlContext = new org.apache.spark.sql.SQLContext(sc)
import sqlContext.implicits._
kafkaStream.foreachRDD(rdd => {
rdd.foreach(println)
if(rdd.count()>0) {
// rdd.toDF("value").coalesce(1).write.mode(SaveMode.Append).text("file:///D:/my/")
// rdd.toDF("value").coalesce(1).write.mode(SaveMode.Append).text("file://user/cloudera/testdata")
rdd.toDF("value").coalesce(1).write.mode(SaveMode.Append).text("hdfs://hostname:8020/user/cloudera/testdata")
// rdd.saveAsTextFile("C:/data/spark/")
}
})
Complete POM.XML
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>com.cyb</groupId>
<artifactId>First</artifactId>
<version>0.0.1-SNAPSHOT</version>
<packaging>jar</packaging>
<name>First</name>
<url>http://maven.apache.org</url>
<properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
</properties>
<dependencies>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming_2.11</artifactId>
<version>1.6.0</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming-kafka_2.11</artifactId>
<version>1.6.0</version>
</dependency>
<dependency>
<groupId>org.apache.kafka</groupId>
<artifactId>kafka-clients</artifactId>
<version>0.10.2.0</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_2.11</artifactId>
<version>1.6.0</version>
</dependency>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>3.8.1</version>
<scope>test</scope>
</dependency>
</dependencies>
</project>
Output
We want to write the stream data into HDFS storage from Kafka topic.
Any help on it would be much appreciated ?
You need to import spark sql libraries to use spark-sql functions. Try importing this
import org.apache.spark.sql.hive.HiveContext
import org.apache.spark.sql.SQLImplicits
import org.apache.spark.sql.SQLContext

Why does reading stream from Kafka fail with "Unable to find encoder for type stored in a Dataset"?

I am trying to use Spark Structured Streaming with Kafka.
object StructuredStreaming {
def main(args: Array[String]) {
if (args.length < 2) {
System.err.println("Usage: StructuredStreaming <hostname> <port>")
System.exit(1)
}
val host = args(0)
val port = args(1).toInt
val spark = SparkSession
.builder
.appName("StructuredStreaming")
.config("spark.master", "local")
.getOrCreate()
import spark.implicits._
// Subscribe to 1 topic
val lines = spark
.readStream
.format("kafka")
.option("kafka.bootstrap.servers", "localhost:9093")
.option("subscribe", "sparkss")
.load()
lines.selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)")
.as[(String, String)]
}
}
I got my code from Spark documentation and I got this build error :
Unable to find encoder for type stored in a Dataset. Primitive types
(Int, String, etc) and Product types (case classes) are supported by
importing spark.implicits._ Support for serializing other types will
be added in future releases.
.as[(String, String)]
I read on other SO post that it was due to the lack of import spark.implicits._. But it does not change anything for me.
UPDATE :
<properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<slf4j.version>1.7.12</slf4j.version>
<spark.version>2.1.0</spark.version>
<scala.version>2.10.4</scala.version>
<scala.binary.version>2.10</scala.binary.version>
</properties>
<dependencies>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.10</artifactId>
<version>2.1.0</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_2.10</artifactId>
<version>2.1.0</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql-kafka-0-10_2.10</artifactId>
<version>2.1.0</version>
</dependency>
</dependencies>
Well, I tried with scala 2.11.8
<scala.version>2.11.8</scala.version>
<scala.binary.version>2.11</scala.binary.version>
<dependencies>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.11</artifactId>
<version>2.1.0</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_2.11</artifactId>
<version>2.1.0</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql-kafka-0-10_2.11</artifactId>
<version>2.1.0</version>
</dependency>
</dependencies>
and with corresponding dependencies (for scala 2.11) and it eventually worked.
Warning : You need to restart your project on intelliJ, I think there are some problems when changing version and not restarting, the errors are still there.

About a java.lang.NoClassDefFoundError: Could not initialize class org.xerial.snappy.Snappy

i have an error when I try to compile, test and run a junit test.
I want to load a local Avro file using DataFrames but I am getting an exception:
org.xerial.snappy.SnappyError: [FAILED_TO_LOAD_NATIVE_LIBRARY] null
I am not using Cassandra at all, the version of involved jars are:
<properties>
<!-- Generic properties -->
<java.version>1.7</java.version>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding>
<!-- Dependency versions -->
<maven.compiler.source>1.7</maven.compiler.source>
<maven.compiler.target>1.7</maven.compiler.target>
<scala.version>2.10.4</scala.version>
<junit.version>4.11</junit.version>
<slf4j.version>1.7.12</slf4j.version>
<spark.version>1.5.0-cdh5.5.2</spark.version>
<databricks.version>1.5.0</databricks.version>
<json4s-native.version>3.5.0</json4s-native.version>
<spark-avro.version>2.0.1</spark-avro.version>
</properties>
and these are the dependencies:
<dependencies>
<dependency>
<groupId>org.json4s</groupId>
<artifactId>json4s-native_2.10</artifactId>
<version>${json4s-native.version}</version>
</dependency>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>${junit.version}</version>
<scope>test</scope>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_2.10</artifactId>
<version>${spark.version}</version>
</dependency>
<dependency>
<groupId>com.databricks</groupId>
<artifactId>spark-csv_2.10</artifactId>
<version>${databricks.version}</version>
<exclusions>
<exclusion>
<groupId>org.xerial.snappy</groupId>
<artifactId>snappy-java</artifactId>
</exclusion>
</exclusions>
</dependency>
<dependency>
<groupId>org.xerial.snappy</groupId>
<artifactId>snappy-java</artifactId>
<version>1.0.4.1</version>
<scope>compile</scope>
</dependency>
<dependency>
<groupId>com.databricks</groupId>
<artifactId>spark-avro_2.10</artifactId>
<version>${spark-avro.version}</version>
</dependency>
<!-- https://mvnrepository.com/artifact/log4j/log4j -->
<dependency>
<groupId>log4j</groupId>
<artifactId>log4j</artifactId>
<version>1.2.17</version>
</dependency>
</dependencies>
I have tried to compile the project with
mvn clean install -Dorg.xerial.snappy.lib.name=libsnappyjava.jnlib -Dorg.xerial.snappy.tempdir=/tmp
before copying the jar within /tmp, with no luck.
$ ls -lt /tmp/
total 1944
...27 dic 13:01 snappy-java-1.0.4.jar
This is the code:
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.{DataFrame, Row, SQLContext, SaveMode}
import org.apache.spark.{SparkConf, SparkContext}
import com.databricks.spark.avro._
import java.io._
//auxiliary function
def readRawData(pathToResources: String, sqlContext: SQLContext, rawFormat: String = "json"): DataFrame = {
val a: DataFrame = rawFormat match {
case "avro" => sqlContext.read.avro(pathToResources)
case "json" => sqlContext.read.json(pathToResources)
case _ => throw new Exception("Format not supported, use AVRO or JSON instead.")
}
val b: DataFrame = a.filter("extraData.type = 'data'")
val c: DataFrame = a.select("extraData.topic", "extraData.timestamp",
"extraData.sha1Hex", "extraData.filePath", "extraData.fileName",
"extraData.lineNumber", "extraData.type",
"message")
val indexForMessage: Int = c.schema.fieldIndex("message")
val result: RDD[Row] = c.rdd.filter(r =>
!r.anyNull match {
case true => true
case false => false
}
).flatMap(r => {
val metadata: String = r.toSeq.slice(0, indexForMessage).mkString(",")
val lines = r.getString(indexForMessage).split("\n")
lines.map(l => Row.fromSeq(metadata.split(",").toSeq ++ Seq(l)))
})
sqlContext.createDataFrame(result, c.schema)
}//readRawData
def validate(rawFlumeData : String = "FlumeData.1482407196579",fileNamesToBeDigested : String = "fileNames-to-be-digested.txt", sqlContext: SQLContext,sc:SparkContext) : Boolean = {
val result : Boolean = true
sqlContext.sparkContext.hadoopConfiguration.set("avro.mapred.ignore.inputs.without.extension", "false")
val rawDF : DataFrame = readRawData(rawFlumeData, sqlContext, rawFormat = "avro")
rawDF.registerTempTable("RAW")
//this line provokes the exception! cannot load snappy jar file!
val arrayRows : Array[org.apache.spark.sql.Row] = sqlContext.sql("SELECT distinct fileName as filenames FROM RAW GROUP BY fileName").collect()
val arrayFileNames : Array[String] = arrayRows.map(row=>row.getString(0))
val fileNamesDigested = "fileNames-AVRO-1482407196579.txt"
val pw = new PrintWriter(new File(fileNamesDigested))
for (filename <-arrayFileNames) pw.write(filename + "\n")
pw.close
val searchListToBeDigested : org.apache.spark.rdd.RDD[String] = sc.textFile(fileNamesToBeDigested)
//creo un map con valores como éstos: Map(EUR_BACK_SWVOL_SMILE_GBP_20160930.csv -> 0, UK_SC_equities_20160930.csv -> 14,...
//val mapFileNamesToBeDigested: Map[String, Long] = searchListToBeDigested.zipWithUniqueId().collect().toMap
val searchFilesAVRODigested = sc.textFile(fileNamesDigested)
val mapFileNamesAVRODigested: Map[String, Long] = searchFilesAVRODigested.zipWithUniqueId().collect().toMap
val pwResults = new PrintWriter(new File("validation-results.txt"))
//Hay que guardar el resultado en un fichero de texto, en algún lado...
val buffer = StringBuilder.newBuilder
//Me traigo los resultados al Driver.
val listFilesToBeDigested = searchListToBeDigested.map {line =>
val resultTemp = mapFileNamesAVRODigested.getOrElse(line,"NOT INGESTED!")
var resul = ""
if (resultTemp == "NOT INGESTED!"){
resul = "File " + line + " " + resultTemp + "\n"
}
else{
resul = "File " + line + " " + " is INGESTED!" + "\n"
}
resul
}.collect()
//añado los datos al buffer
listFilesToBeDigested.foreach(buffer.append(_))
//guardo el contenido del buffer en el fichero de texto de salida.
pwResults.write(buffer.toString)
pwResults.close
//this boolean must return false in case of a exception or error...
result
}//
This is the unit test code:
private[validation] class ValidateInputCSVFilesTest {
//AS YOU CAN SEE, I do not WANT to use snappy at all!
val conf = new SparkConf()
.setAppName("ValidateInputCSVFilesTest")
.setMaster("local[2]")
.set("spark.driver.allowMultipleContexts", "true")
.set("spark.driver.host", "127.0.0.1")
.set("spark.io.compression.codec", "lzf")
val sc = new SparkContext(conf)
val sqlContext = new org.apache.spark.sql.SQLContext(sc)
val properties : Properties = new Properties()
properties.setProperty("frtb.input.csv.validation.avro","./src/test/resources/avro/FlumeData.1482407196579")
properties.setProperty("frtb.input.csv.validation.list.files","./src/test/resources/fileNames-to-be-digested.txt")
import sqlContext.implicits._
sqlContext.sparkContext.hadoopConfiguration.set("avro.mapred.ignore.inputs.without.extension", "false")
#Test
def testValidateInputFiles() = {
//def validate(rawFlumeData : String = "FlumeData.1482407196579",fileNamesToBeDigested : String = "fileNames-to-be-digested.txt", sqlContext: SQLContext)
val rawFlumeData = properties.getProperty("frtb.input.csv.validation.avro")
val fileNamesToBeDigested = properties.getProperty("frtb.input.csv.validation.list.files")
println("rawFlumeData is " + rawFlumeData )
println("fileNamesToBeDigested is " + fileNamesToBeDigested )
val result : Boolean = ValidateInputCSVFiles.validate(rawFlumeData ,fileNamesToBeDigested ,sqlContext,sc)
Assert.assertTrue("Must be true...",result)
}//end of test method
}//end of unit class
I can run perfectly the same code in a local spark-shell, using this command:
$ bin/spark-shell --packages org.json4s:json4s-native_2.10:3.5.0 --packages com.databricks:spark-csv_2.10:1.5.0 --packages com.databricks:spark-avro_2.10:2.0.1
What else can I do?
Thanks in advance.
The problem was solved when I changed the scope of spark dependencies.
This is part of the pom.xml that solves my problem, now I can run the job with spark-submit command...
<properties>
<!-- Generic properties -->
<java.version>1.7</java.version>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding>
<!-- Dependency versions -->
<maven.compiler.source>1.7</maven.compiler.source>
<maven.compiler.target>1.7</maven.compiler.target>
<scala.version>2.10.4</scala.version>
<junit.version>4.11</junit.version>
<slf4j.version>1.7.12</slf4j.version>
<spark.version>1.5.0-cdh5.5.2</spark.version>
<databricks.version>1.5.0</databricks.version>
<json4s-native.version>3.5.0</json4s-native.version>
<spark-avro.version>2.0.1</spark-avro.version>
</properties>
...
<dependencies>
<dependency>
<groupId>org.json4s</groupId>
<artifactId>json4s-native_2.10</artifactId>
<version>${json4s-native.version}</version>
</dependency>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>${junit.version}</version>
<scope>test</scope>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_2.10</artifactId>
<version>${spark.version}</version>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>com.databricks</groupId>
<artifactId>spark-csv_2.10</artifactId>
<version>${databricks.version}</version>
<scope>provided</scope>
<exclusions>
<exclusion>
<groupId>org.xerial.snappy</groupId>
<artifactId>snappy-java</artifactId>
</exclusion>
</exclusions>
</dependency>
<dependency>
<groupId>org.xerial.snappy</groupId>
<artifactId>snappy-java</artifactId>
<version>1.0.4.1</version>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>com.databricks</groupId>
<artifactId>spark-avro_2.10</artifactId>
<version>${spark-avro.version}</version>
</dependency>
<!-- https://mvnrepository.com/artifact/log4j/log4j -->
<dependency>
<groupId>log4j</groupId>
<artifactId>log4j</artifactId>
<version>1.2.17</version>
</dependency>
</dependencies>
...

Spark Scala : Unable to import sqlContext.implicits._

I tried the below code and cannot import sqlContext.implicits._ - it throws an error (in the Scala IDE), unable to build the code:
value implicits is not a member of org.apache.spark.sql.SQLContext
Do I need to add any dependencies in pom.xml?
Spark version 1.5.2
package com.Spark.ConnectToHadoop
import org.apache.spark.SparkConf
import org.apache.spark.SparkConf
import org.apache.spark._
import org.apache.spark.sql._
import org.apache.spark.sql.hive.HiveContext
import org.apache.spark.sql.SQLContext
import org.apache.spark.rdd.RDD
//import groovy.sql.Sql.CreateStatementCommand
//import org.apache.spark.SparkConf
object CountWords {
def main(args:Array[String]){
val objConf = new SparkConf().setAppName("Spark Connection").setMaster("spark://IP:7077")
var sc = new SparkContext(objConf)
val objHiveContext = new HiveContext(sc)
objHiveContext.sql("USE test")
var rdd= objHiveContext.sql("select * from Table1")
val options=Map("path" -> "hdfs://URL/apps/hive/warehouse/test.db/TableName")
//val sqlContext = new org.apache.spark.sql.SQLContext(sc)
val sqlContext = new SQLContext(sc)
import sqlContext.implicits._ //Error
val dataframe = rdd.toDF()
dataframe.write.format("orc").options(options).mode(SaveMode.Overwrite).saveAsTable("TableName")
}
}
My pom.xml file is as follows
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>com.Sudhir.Maven1</groupId>
<artifactId>SparkDemo</artifactId>
<version>0.0.1-SNAPSHOT</version>
<packaging>jar</packaging>
<name>SparkDemo</name>
<url>http://maven.apache.org</url>
<properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
</properties>
<dependencies>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.10</artifactId>
<version>1.5.2</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_2.10</artifactId>
<version>1.0.0</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-mllib_2.10</artifactId>
<version>1.5.2</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming_2.10</artifactId>
<version>0.9.1</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-hive_2.10</artifactId>
<version>1.2.1</version>
</dependency>
<dependency>
<groupId>org.apache.hive</groupId>
<artifactId>hive-jdbc</artifactId>
<version>1.2.1</version>
</dependency>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>3.8.1</version>
<scope>test</scope>
</dependency>
</dependencies>
</project>
first create
val sqlContext = new org.apache.spark.sql.SQLContext(sc)
now we have sqlContext w.r.t sc (this will be available automatically when we launch spark-shell)
now,
import sqlContext.implicits._
With the release of Spark 2.0.0 (July 26, 2016) one should now use the following:
import spark.implicits._ // spark = SparkSession.builder().getOrCreate()
https://databricks.com/blog/2016/08/15/how-to-use-sparksession-in-apache-spark-2-0.html
You use an old version of Spark-SQL. Change it to:
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_2.10</artifactId>
<version>1.5.2</version>
</dependency>
For someone using sbt to build, update the library versions to
libraryDependencies ++= Seq(
"org.apache.spark" % "spark-core_2.12" % "2.4.6" % "provided",
"org.apache.spark" % "spark-sql_2.12" % "2.4.6" % "provided"
)
And then import SqlImplicits as below.
val spark = SparkSession.builder()
.appName("appName")
.getOrCreate()
import spark.sqlContext.implicits._;
You can also use
<properties>
<spark.version>2.2.0</spark.version>
</properties>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.11</artifactId>
<version>${spark.version}</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_2.11</artifactId>
<version>${spark.version}</version>
</dependency>