I'm fairly close to this solution, but I just need a little help getting over the end.
I'm trying to get a running count of the occurrences of client_ids regardless of the date, however I need the dates and ids to still appear in my results to verify everything.
I found part of the solution here but have not been able to modify it enough for my needs.
Here is what the answer should be, counting if the occurrences of the client_ids sequentially :
id client_id deliver_on running_total
1 138 2017-10-01 1
2 29 2017-10-01 1
3 138 2017-10-01 2
4 29 2013-10-02 2
5 29 2013-10-02 3
6 29 2013-10-03 4
7 138 2013-10-03 3
However, here is what I'm getting:
id client_id deliver_on running_total
1 138 2017-10-01 1
2 29 2017-10-01 1
3 138 2017-10-01 1
4 29 2013-10-02 3
5 29 2013-10-02 3
6 29 2013-10-03 1
7 138 2013-10-03 2
Rather than counting the times the client_id appears sequentially, the code counts the time the id appears in the previous date range.
Here is my code and any help would be greatly appreciated.
Thank you,
SELECT n.id, n.client_id, n.deliver_on, COUNT(n.client_id) AS "running_total"
FROM orders n
LEFT JOIN orders o
ON (o.client_id = n.client_id
AND n.deliver_on > o.deliver_on)
GROUP BY n.id, n.deliver_on, n.client_id
ORDER BY n.deliver_on ASC
* EDIT WITH ANSWER *
I ending up solving my own question. Here is the solution with comments:
-- Set "1" for counting to be used later
WITH DATA AS (
SELECT
orders.id,
orders.client_id,
orders.deliver_on,
COUNT(1) -- Creates a column of "1" for counting the occurrences
FROM orders
GROUP BY 1
ORDER BY deliver_on, client_id
)
SELECT
id,
client_id,
deliver_on,
SUM(COUNT) OVER (PARTITION BY client_id
ORDER BY client_id, deliver_on
ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) -- Counts the sequential client_ids based on the number of times they appear
FROM DATA
Just the answer posted to close the question:
-- Set "1" for counting to be used later
WITH DATA AS (
SELECT
orders.id,
orders.client_id,
orders.deliver_on,
COUNT(1) -- Creates a column of "1" for counting the occurrences
FROM orders
GROUP BY 1
ORDER BY deliver_on, client_id
)
SELECT
id,
client_id,
deliver_on,
SUM(COUNT) OVER (PARTITION BY client_id
ORDER BY client_id, deliver_on
ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) -- Counts the sequential client_ids based on the number of times they appear
FROM DATA
Related
I am working on a query to return the next 7 days worth of data every time an event happens indicated by "where event = 1". The goal is to then group all the data by the user id and perform aggregate functions on this data after the event happens - the event is encoded as binary [0, 1].
So far, I have been attempting to use nested select statements to structure the data how I would like to have it, but using the window functions is starting to restrict me. I am now thinking a self join could be more appropriate but need help in constructing such a query.
The query currently first creates daily aggregate values grouped by user and date (3rd level nested select). Then, the 2nd level sums the data "value_x" to obtain an aggregate value grouped by the user. Then, the 1st level nested select statement uses the lead function to grab the next rows value over and partitioned by each user which acts as selecting the next day's value when event = 1. Lastly, the select statement uses an aggregate function to calculate the average "sum_next_day_value_after_event" grouped by user and where event = 1. Put together, where event = 1, the query returns the avg(value_x) of the next row's total value_x.
However, this doesn't follow my time rule; "where event = 1", return the next 7 days worth of data after the event happens. If there is not 7 days worth of data, then return whatever data is <= 7 days. Yes, I currently only have one lead with the offset as 1, but you could just put 6 more of these functions to grab the next 6 rows. But, the lead function currently just grabs the next row without regard to date. So theoretically, the next row's "value_x" could actually be 15 days from where "event = 1". Also, as can be seen below in the data table, a user may have more than one row per day.
Here is the following query I have so far:
select
f.user_id
avg(f.sum_next_day_value_after_event) as sum_next_day_values
from (
select
bld.user_id,
lead(bld.value_x, 1) over(partition by bld.user_id order by bld.daily) as sum_next_day_value_after_event
from (
select
l.user_id,
l.daily,
sum(l.value_x) as sum_daily_value_x
from (
select
user_id, value_x, date_part('day', day_ts) as daily
from table_1
group by date_part('day', day_ts), user_id, value_x) l
group by l.user_id, l.day_ts
order by l.user_id) bld) f
group by f.user_id
Below is a snippet of the data from table_1:
user_id
day_ts
value_x
event
50
4/2/21 07:37
25
0
50
4/2/21 07:42
45
0
50
4/2/21 09:14
67
1
50
4/5/21 10:09
8
0
50
4/5/21 10:24
75
0
50
4/8/21 11:08
34
0
50
4/15/21 13:09
32
1
50
4/16/21 14:23
12
0
50
4/29/21 14:34
90
0
55
4/4/21 15:31
12
0
55
4/5/21 15:23
34
0
55
4/17/21 18:58
32
1
55
4/17/21 19:00
66
1
55
4/18/21 19:57
54
0
55
4/23/21 20:02
34
0
55
4/29/21 20:39
57
0
55
4/30/21 21:46
43
0
Technical details:
PostgreSQL, supported by EDB, version = 14.1
pgAdmin4, version 5.7
Thanks for the help!
"The query currently first creates daily aggregate values"
I don't see any aggregate function in your first query, so that the GROUP BY clause is useless.
select
user_id, value_x, date_part('day', day_ts) as daily
from table_1
group by date_part('day', day_ts), user_id, value_x
could be simplified as
select
user_id, value_x, date_part('day', day_ts) as daily
from table_1
which in turn provides no real added value, so this first query could be removed and the second query would become :
select user_id
, date_part('day', day_ts) as daily
, sum(value_x) as sum_daily_value_x
from table_1
group by user_id, date_part('day', day_ts)
The order by user_id clause can also be removed at this step.
Now if you want to calculate the average value of the sum_daily_value_x in the period of 7 days after the event (I'm referring to the avg() function in your top query), you can use avg() as a window function that you can restrict to the period of 7 days after the event :
select f.user_id
, avg(f.sum_daily_value_x) over (order by f.daily range between current row and '7 days' following) as sum_next_day_values
from (
select user_id
, date_part('day', day_ts) as daily
, sum(value_x) as sum_daily_value_x
from table_1
group by user_id, date_part('day', day_ts)
) AS f
group by f.user_id
The partition by f.user_id clause in the window function is useless because the rows have already been grouped by f.user_id before the window function is applied.
You can replace the avg() window function by any other one, for instance sum() which could better fit with the alias sum_next_day_values
i have a table and i want to know where duplicate records are present for same columns. These are my columns and i want to get record where group_id or week are different for same code and fweek and newcode
Id newcode fweek code group_id week
1 343001 2016-01 343 100 8
2 343002 2016-01 343 100 8
3 343001 2016-01 343 101 08
Required record is
Id newcode fweek code group_id week
3 343001 2016-01 343 101 08
To find the duplicate values i have joined the table with itself.
and we need to group the results with code,fweek and newcode to get more than one duplicate rows if they exist. i have used max() to get last inserted row.
you don't need to use is distinct from (it is same for inequality + NULL). if you don't want to compare NULL ones, use <> operator.
You find more information about here info
select r.*
from your_table r
where r.id in (select max(r.id)
from your_table r
join your_table r2 on r2.code = r.code and r2.fweek = r.fweek and r2.newcode = r.newcode
where
r2.group_id is distinct from r.group_id or
r2.week is distinct from r.week
group by r.code,
r.fweek,
r.newcode
having count(*) > 1)
I need to find users who have posted three times or more, three months in a row. I wrote this query:
select count(id), owneruserid, extract(month from creationdate) as postmonth from posts
group by owneruserid, postmonth
having count(id) >=3
order by owneruserid, postmonth
And I get this:
count owneruserid postmonth
36 -1 1
23 -1 2
45 -1 3
41 -1 4
18 -1 5
24 -1 6
31 -1 7
78 -1 8
83 -1 9
17 -1 10
88 -1 11
127 -1 12
3 6 11
3 7 12
4 8 1
8 8 12
4 12 4
3 12 5
3 22 2
4 22 4
(truncated)
Which is great. How can I query for users who posted three times or more, three months or more in a row? Thanks.
This is called the Islands and Gaps problem, specifically it's an Island problem with a date range. You should,
Fix this question up.
Flag it to be sent to dba.stackexchange.com
To solve this,
Create a pseudo column with a window that has 1 if the row preceding it does not correspond to the preceding mont
Create groups out of that with COUNT()
Check to make sure the count(*) for the group is greater than or equal to three.
Query,
SELECT l.id, creationdaterange, count(*)
FROM (
SELECT t.id,
t.creationdate,
count(range_reset) OVER (PARTITION BY t.id ORDER BY creationdate) AS creationdaterange
FROM (
SELECT id,
creationdate,
CASE
WHEN date_trunc('month',creationdate::date)::date - interval '1 month' = date_trunc('month',lag(creationdate))::date OVER (PARTITION BY id ORDER BY creationdate)
THEN 1
END AS range_reset
FROM post
ORDER BY id, creationdate
) AS t;
) AS l
GROUP BY t.id, creationdaterange
HAVING count(*) >= 3;
Assuming data such as the following:
ID EffDate Rate
1 12/12/2011 100
1 01/01/2012 110
1 02/01/2012 120
2 01/01/2012 40
2 02/01/2012 50
3 01/01/2012 25
3 03/01/2012 30
3 05/01/2012 35
How would I find the rate for ID 2 as of 1/15/2012?
Or, the rate for ID 1 for 1/15/2012?
In other words, how do I do a query that finds the correct rate when the date falls between the EffDate for two records? (Rate should be for the date prior to the selected date).
Thanks,
John
How about this:
SELECT Rate
FROM Table1
WHERE ID = 1 AND EffDate = (
SELECT MAX(EffDate)
FROM Table1
WHERE ID = 1 AND EffDate <= '2012-15-01');
Here's an SQL Fiddle to play with. I assume here that 'ID/EffDate' pair is unique for all table (at least the opposite doesn't make sense).
SELECT TOP 1 Rate FROM the_table
WHERE ID=whatever AND EffDate <='whatever'
ORDER BY EffDate DESC
if I read you right.
(edited to suit my idea of ms-sql which I have no idea about).
I want to insert a row number in a records like counting rows in a specific number of range. example output:
RowNumber ID Name
1 20 a
2 21 b
3 22 c
1 23 d
2 24 e
3 25 f
1 26 g
2 27 h
3 28 i
1 29 j
2 30 k
I rather to try using the rownumber() over (partition by order by column name) but my real records are not containing columns that will count into 1-3 rownumber.
I already try to loop each of record to insert a row count 1-3 but this loop affects the performance of the query. The query will use for the RDL report, that is why as much as possible the performance of the query must be good.
any suggestions are welcome. Thanks
have you tried modulo-ing rownumber()?
SELECT
((row_number() over (order by ID)-1) % 3) +1 as RowNumber
FROM table