I need to understand the difference between both EAGAIN and EWOULDBLOCK as I have seen many source code are checking against EAGAIN only (may be both the codes represent same number, Correct me here.)
My part of knowledge:
For blocking socket if sender buffer is full and receiver is not receiving any data,Sender will get hanged if call send(). This is because once data is read by the receiver the space it was using in the buffer is made available for new data. If your socket is in 'non blocking' mode then the 'send()' will fail with 'EAGAIN' or 'EWOULDBLOCK'.
Are they always the same number or is there any scenario where they need to be treated differently. ?
In short: they're almost always the same value, but for portability it's recommended to check for both values (and treat both values the same way).
For most systems, EAGAIN and EWOULDBLOCK will be the same. There are only a few systems in which they are different, and you can see the list of those systems in this answer.
Even the errno manpage mentions that they "may be the same [value]".
Historically, however, EWOULDBLOCK was defined for "operation would block" - that is, the operation would have blocked, but the descriptor was placed in non-blocking mode. EAGAIN originally indicated when a "temporary resource shortage made an operation impossible". The example used by the gnu documentation is when there are not enough resources to fork(). Because the resource shortage was expected to be temporary, a subsequent attempt to perform the action might succeed (hence the name "again").
Practically speaking, those types of temporary resource shortages are not that common (but pretty serious when they do occur).
Most systems define these values as the same, and the systems which don't will become more and more uncommon in the future. Nevertheless, for portability reasons you should check for both values, but you should also treat both errors in the same way. As the GNU documentation states:
Portability Note: In many older Unix systems ... [EWOULDBLOCK was] a distinct error code different from EAGAIN. To make your program portable, you should check for both codes and treat them the same.
They are functionally the same. The reason for the two different names is historic going back to the 1980s. EWOULDBLOCK was used on BSD/Sun variants of Unix, and EAGAIN was the AT&T System V error code.
For a compiled binary on a particular system the codes should have the same value. The reason both names are defined in include files is for source code portability.
They are the same.
Defined in the include/uapi/asm-generic/errno.h file:
#define EWOULDBLOCK EAGAIN /* Operation would block */
Related
At some point when coding sockets one will face the receive-family of functions (recv, recvfrom, recvmsg).
This function accepts a FLAG argument, in which I see that the MSG_WAITALL is used in many examples on the web, such as this example on UDP.
Here is a definition of the MSG_WAITALL flag
MSG_WAITALL (since Linux 2.2)
This flag requests that the operation block until the full request is satisfied. However, the call may still return less data than requested if a signal is caught, an error or disconnect occurs, or the next data to be received is of a different type than that returned. This flag has no effect for datagram sockets.
Hence, my two questions:
Why would one need to use MSG_WAITALL FLAG instead of 0 FLAG? (Could someone explain a scenario of a problem for which the use of this would be the solution?)
Why to use it with UDP?
As the quoted man page mentions, MSG_WAITALL has no effect on UDP sockets, so there's no reason to use it there. Examples that do use it are probably confused and/or the result of several generations of cargo-cult/copy-and-paste programming. :)
For TCP, OTOH, the default behavior of recv() is to block until at least one byte of data can be copied into the user's buffer from the sockets incoming-data-buffer. The TCP stack will try to provide as many bytes of data as it can, of course, but in a case where the socket's incoming-data-buffer contains fewer bytes of data than the user has passed in to recv(), the TCP stack will copy as many bytes as it can, and return the byte-count indicating how many bytes it actually provided.
However, some people find would prefer to have their recv() call keep blocking until all of the bytes in their passed-in array have been filled in, regardless of how long that might take. For those people, the MSG_WAITALL flag provides a simple way to obtain that behavior. (The flag is not strictly necessary, since the programmer could always emulate that behavior by writing a while() loop that calls recv() multiple times as necessary, until all the bytes in the buffer have been populated... but it's provided as a convenience nonetheless)
In an Operating Systems course, the instructor introduced PSW and PC when he talked about Interrupt Handling.
His explanation was
PC holds the address of the next instruction to be fetched
PSW contains execution status information
But later I searched online and found that PSW = PC + status register. This makes me quite confused.
On the one hand, I am not sure what "execution status information" refers to. On the other hand, if PSW has the functions of a PC, why do we still need it?
Appreciate any explanation.
This isn't really standardized terminology. Most architectures have some register that plays the role of a status word, containing bits to indicate things like whether an add instruction caused a carry. But different architectures give it different names, and what exactly is included can vary widely. I'm not aware of any architecture that includes the program counter as part of their status word, but if they want to do that, well, who's going to stop them?
This is the kind of thing where you just have to look at the definition given by whatever book or article you are reading (or infer it from context), and realize that a different author may use the word differently.
In general, interrupts are hardware level subroutine calls. They do the same thing as a subroutine call (change the algorithm that the processor is executing) however they do it without warning the "executing code" that they are now operating.
In order to not damage the "executing code" all information that it was using must be stored. This includes the Program Counter (usually saved to the stack by the interrupt hardware in the same way that a subroutine call does) and all of the registers that the interrupt function will alter- these must be saved by pushing them onto the stack. The registers etc must be restored before the return from interrupt (RETI) instruction - the PC is restored by the RETI itself.
The PSW (often called the flag register) is a very important register and must generally be saved first. It contains bits like Zero (the last calculation resulted in a zero result) Carry (the last calculation resulted in a carry ie the result number is bigger than the register can hold) and several other flags. I suggest that you read the data sheet of an 8 bit microcontroller for an idea of what these flags might be. suffice it to say that these flags are needed in order to perform conditional jumps. And whilst they will often be ignored you can't take that chance.
You are probably correct in Your instructor using the term PSW to mean all all of the registers.
The subject of interrupts contains concepts that are common to subroutine calls in general (e.g. don't leave data that you don't want overwritten in a register before entering a subroutine). And later on in operating systems, the concept of context switches that occur during multi-tasking.
Peter
Trying to understand why there are ioctl calls in socket.c ? I can see a modified kernel that I am using, it has some ioctl calls which load in the required modules when the calls are made.
I was wondering why these calls ended up in socket.c ? Isn't socket kind of not-a-device and ioctls are primarily used for device.
Talking about 2.6.32.0 heavily modified kernel here.
ioctl suffers from its historic name. While originally developed to perform i/o controls on devices, it has a generic enough construct that it may be used for arbitrary service requests to the kernel in context of a file descriptor. A file descriptor is an opaque value (just an int) provided by the kernel that can be associated with anything.
Now if you treat a file descriptor and think of things as files, which most *nix constructs do, open/read/write/close isn't enough. What if you want to label a file (rename)? what if you want to wait for a file to become available (ioctl)? what if you want to terminate everything if a file closes (termios)? all the "meta" operations that don't make sense in the core read/write context are lumped under ioctls; fctls; etc. unless they are so frequently used that they deserve their own system call (e.g. flock(2) functionality in BSD4.2)
Do the risks caused by bypassing Perl safe signals for example like shown in the second timeout example in the DBI documentation concern only the code that uses such bypassing?
The code in that example works hard to localize the change to just that section of code, or any code called from it.
There is not 100% guarantee that no code will be effected outside the code that bypasses safe signals, because signals are no longer safe. In the example the call being timed out is a DBI->connect. For most DBD's this will be implemented mostly in C, unless the C code can handle being aborted and tried again you might find that some data structures internal to the DBD, or the libraries it uses, are left in a inconstant state.
The chances of the example code going wrong is probably incredibly tiny. My personal anecdote on the issues is that I had used the traditional Perl signal handling for years before safe signals were introduced and for a long time I had never had a problem. I hadn't even been very cautious about what I did in my signal handlers. Then we managed to hit a data set that actually did trigger memory corruptions in about 1 out of ever 100 runs. Just modifying the signal handlers to use better practices, similar to those in the example, eliminated our issues.
What does that even mean? By using unsafe signals, you can corrupt Perl's internals and Perl variables. It can also cause problem if a non-reentrant C library call is interrupted.
This can lead to SEGFAULTs and other problems, and those may only manifest themselves outside the block where the timeout is in effect.
Since I'm not a native English speaker I might be missing something so maybe someone here knows better than me.
Taken from WSASend's doumentation at MSDN:
lpBuffers [in]
A pointer to an array of WSABUF
structures. Each WSABUF structure
contains a pointer to a buffer and the
length, in bytes, of the buffer. For a
Winsock application, once the WSASend
function is called, the system owns
these buffers and the application may
not access them. This array must
remain valid for the duration of the
send operation.
Ok, can you see the bold text? That's the unclear spot!
I can think of two translations for this line (might be something else, you name it):
Translation 1 - "buffers" refers to the OVERLAPPED structure that I pass this function when calling it. I may reuse the object again only when getting a completion notification about it.
Translation 2 - "buffers" refer to the actual buffers, those with the data I'm sending. If the WSABUF object points to one buffer, then I cannot touch this buffer until the operation is complete.
Can anyone tell what's the right interpretation to that line?
And..... If the answer is the second one - how would you resolve it?
Because to me it implies that for each and every data/buffer I'm sending I must retain a copy of it at the sender side - thus having MANY "pending" buffers (in different sizes) on an high traffic application, which really going to hurt "scalability".
Statement 1:
In addition to the above paragraph (the "And...."), I thought that IOCP copies the data to-be-sent to it's own buffer and sends from there, unless you set SO_SNDBUF to zero.
Statement 2:
I use stack-allocated buffers (you know, something like char cBuff[1024]; at the function body - if the translation to the main question is the second option (i.e buffers must stay as they are until the send is complete), then... that really screws things up big-time! Can you think of a way to resolve it? (I know, I asked it in other words above).
The answer is that the overlapped structure and the data buffer itself cannot be reused or released until the completion for the operation occurs.
This is because the operation is completed asynchronously so even if the data is eventually copied into operating system owned buffers in the TCP/IP stack that may not occur until some time in the future and you're notified of when by the write completion occurring. Note that with write completions these may be delayed for a surprising amount of time if you're sending without explicit flow control and relying on the the TCP stack to do flow control for you (see here: some OVERLAPS using WSASend not returning in a timely manner using GetQueuedCompletionStatus?) ...
You can't use stack allocated buffers unless you place an event in the overlapped structure and block on it until the async operation completes; there's not a lot of point in doing that as you add complexity over a normal blocking call and you don't gain a great deal by issuing the call async and then waiting on it.
In my IOCP server framework (which you can get for free from here) I use dynamically allocated buffers which include the OVERLAPPED structure and which are reference counted. This means that the cleanup (in my case they're returned to a pool for reuse) happens when the completion occurs and the reference is released. It also means that you can choose to continue to use the buffer after the operation and the cleanup is still simple.
See also here: I/O Completion Port, How to free Per Socket Context and Per I/O Context?