What is Base94 encoding and how does it work? - encoding

I googled and could not find much information on Base94 encoding. Does anyone has more details about this encoding?

Essentially: Base94 encoding takes 9 input bytes of 8 bits each, uses those to construct a 72-bit integer, and then converts that to an 11-digit base-94 number, and encodes that number using the ASCII characters ! (33) through ~ (126):
!"#$%&'()*+,-./0123456789:;<=>?#ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~
Here is some example code that someone published on GitHub:
https://gist.github.com/iso2022jp/4054241

Related

I have a problem converting a Unicode character into two hexadecimal bytes in UTF-8

I have a problem and I hope you can help me... basically I just started UTF-8 and Unicode, the professor wrote a text file, he wrote "ciaò" inside and showed us the content, displaying each character in hexadecimal (for example the 'c' is 0063, the 'i' is 0069, the 'a' is 0061). The problem is the 'ò' character, which is formed by 2 bytes in UTF-8: c3; b2 (hex). The exercise he gave us is to verify that in UTF-8 the 'ò' character is written just like that (for the resolution he advised us to look at the Unicode website).
I tried to do the exercise this way: I saw that the character 'ò' in hex is 00F2, I transformed it into binary (11110010) and I formed the two bytes of UTF-8 filling the bytes to complete them. |110|11110| e |10|010000|. The problem is that this way I get the following values: DE (instead of c3 for the first byte); 90 (instead of b2 for the second byte). Can someone explain me where I am wrong please?
For the character "ò", its UTF-16 representation is 00F2, and its UTF-8 representation is C3B2. I don't think you can use 00F2 to represent it in UTF-8.
To verify C3B2 is "ò", you can check a website like this one, or if you are using a linux-like terminal you can write:
echo -e "\xC3\xB2"
Which should simply print "ò".

Understanding encoding schemes

I cannot understand some key elements of encoding:
Is ASCII only a character or it also has its encoding scheme algorithm ?
Does other windows code pages such as Latin1 have their own encoding algorithm ?
Are UTF7, 8, 16, 32 the only encoding algorithms ?
Does the UTF alghoritms are used only with the UNICODE set ?
Given the ASCII text: Hello World, if I want to convert it into Latin1 or BIG5, which encoding algorithms are being used in this process ? More specifically, does Latin1/Big5 use their own encoding alghoritm or I have to use a UTF alghoritm ?
1: Ascii is just an encoding — a really simple encoding. It's literally just the positive end of a signed byte (0...127) mapped to characters and control codes.
Refer to https://www.ascii.codes/ to see the full set and inspect the characters.
There are definitely encoding algorithms to convert ascii strings to and from strings in other encodings, but there is no compression/decompression algorithm required to write or read ascii strings like there is for utf8 or utf16, if that's what you're implying.
2: LATIN-1 is also not a compressed (usually called 'variable width') encoding, so there's no algorithm needed to get in and out of it.
See https://kb.iu.edu/d/aepu for a nice description of LATIN-1 conceptually and of each character in the set. Like a lot of encodings, its first 128 slots are just ascii. Like ascii, it's 1 byte in size, but it's an unsigned byte, so after the last ascii character (DEL/127), LATIN1 adds another 128 characters.
As with any conversion from one string encoding to another, there is an algorithm specifically tailored to that conversion.
3: Again, unicode encodings are just that — encodings. But they're all compressed except for utf32. So unless you're working with utf32 there is always a compression/decompression step required to write and read them.
Note: When working with utf32 strings there is one nonlinear oddity that has to be accounted for... combining characters. Technically that is yet another type of compression since they save space by not giving a codepoint to every possible combination of uncombined character and combining character. They "precombine" a few, but they would run out of slots very quickly if they did them all.
4: Yes. The compression/decompression algorithms for the compressed unicode encodings are just for those encodings. They would not work for any other encoding.
Think of it like zip/unzip. Unzipping anything other than a zipped file or folder would of course not work. That goes for things that are not compressed in the first place and also things that are compressed but using another compression algorithm (e.g.: rar).
I recently wrote the utf8 and utf16 compression/decompression code for a new cross-platform library being developed, and I can tell you quite confidently if you feed a Big5-encoded string into my method written specifically for decompressing utf8... not only would it not work, it might very well crash.
Re: your "Hello World" question... Refer to my answer to your second question about LATIN-1. No conversion is required to go from ascii to LATIN-1 because the first 128 characters (0...127) of LATIN-1 are ascii. If you're converting from LATIN-1 to ascii, the same is true for the lower half of LATIN-1, but if any of the characters beyond 127 are in the string, it would be what's called a "lossy"/partial conversion or an outright failure, depending on your tolerance level for lossiness. In your example, however, all of the characters in "Hello World" have the exact same values in both encodings, so it would convert perfectly, without loss, in either direction.
I know practically nothing about Big5, but regardless, don't use utf-x algos for other encodings. Each one of those is written very specifically for 1 particular encoding (or in the case of conversion: pair of encodings).
If you're curious about utf8/16 compression/decompression algorithms, the unicode website is where you should start (watch out though. they don't use the compression/decompression metaphor in their documentation):
http://unicode.org
You probably won't need anything else.
... except maybe a decent codepoint lookup tool: https://www.unicode.codes/
You can roll your own code based on the unicode documentation, or use the official unicode library:
http://site.icu-project.org/home
Hope this helps.
In general, most encoding schemes like ASCII or Latin-1 are simply big tables mapping characters to specific byte sequences. There may or may not be some specific algorithm how the creators came up with those specific character⟷byte associations, but there's generally not much more to it than that.
One of the innovations of Unicode specifically is the indirection of assigning each character a unique number first and foremost, and worrying about how to encode that number into bytes secondarily. There are a number of encoding schemes for how to do this, from the UCS and GB 18030 encodings to the most commonly used UTF-8/UTF-16 encodings. Some are largely defunct by now like UCS-2. Each one has their pros and cons in terms of space tradeoffs, ease of processing and transportability (e.g. UTF-7 for safe transport over 7-bit system like email). Unless otherwise noted, they can all encode the full set of current Unicode characters.
To convert from one encoding to another, you pretty much need to map bytes from one table to another. Meaning, if you look at the EBCDIC table and the Windows 1250 table, the characters 0xC1 and 0x41 respectively both seem to represent the same character "A", so when converting between the two encodings, you'd map those bytes as equivalent. Yes, that means there needs to be one such mapping between each possible encoding pair.
Since that is obviously rather laborious, modern converters virtually always go through Unicode as a middleman. This way each encoding only needs to be mapped to the Unicode table, and the conversion can be done with encoding A → Unicode code point → encoding B. In the end you just want to identify which characters look the same/mean the same, and change the byte representation accordingly.
A character encoding is a mapping from a sequence of characters to a sequence of bytes (in the past there were also encodings to a sequence of bits - they are falling out of fashion). Usually this mapping is one-to-one but not necessarily onto. This means there may be byte sequences that don't correspond to a character sequence in this encoding.
The domain of the mapping defines which characters can be encoded.
Now to your questions:
ASCII is both, it defines 128 characters (some of them are control codes) and how they are mapped to the byte values 0 to 127.
Each encoding may define its own set of characters and how they are mapped to bytes
no, there are others as well ASCII, ISO-8859-1, ...
Unicode uses a two step mapping: first the characters are mapped to (relatively) small integers called "code points", then these integers are mapped to a byte sequence. The first part is the same for all UTF encodings, the second step differs. Unicode has the ambition to contain all characters. This means, most characters are in the "UNICODE set".
Every character in the world has been assigned a unicode value [ numbered from 0 to ...]. It is actually an unique value. Now, it depends on an individual that how he wants to use that unicode value. He can even use it directly or can use some known encoding schemes like utf8, utf16 etc. Encoding schemes map that unicode value into some specific bit sequence [ can vary from 1 byte to 4 bytes or may be 8 in future if we get to know about all the languages of universe/aliens/multiverse ] so that it can be uniquely identified in the encoding scheme.
For example ASCII is an encoding scheme which only encodes 128 characters out of all characters. It uses one byte for every character which is equivalent to utf8 representation. GSM7 is one other format which uses 7 bit per character to encode 128 characters from unicode character list.
Utf8:
It uses 1 byte for characters whose unicode value is till 127.
Beyond this it has its own way of representing the unicode values.
Uses 2 byte for Cyrillic then 3 bytes for Hindi characters.
Utf16:
It uses 2 byte for characters whose unicode value is till 127.
and it also uses 2 byte for Cyrillic, Hindi characters.
All the utf encoding schemes fixes initial bits in specific pattern [ eg: 110|restbits] and rest bits [eg: initialbits|11001] takes the unicode value to make a unique representation.
Wikipedia on utf8, utf16, unicode will make it clear.
I coded an utf translator which converts incoming utf8 text across all languages into its equivalent utf16 text.

troubles with understanding how ASCII works

I have few questions about ASCII encoding:
How come there is 127 characters definable in ASCII coding? It should be 7-bit, which means 2 to the power of 7 which equals 128. Where is the one character missing?
When I save a textfile as a textfile.txt it should be saved in ASCII coding right? But when I write like 10 characters into the file it has 10 bytes, which is 80 bits, shouldnt it be 70 ?
How do I save a file to a kind of ASCII code which has 7 bits per character?
Do some softwares still use the ASCII encoding for storing the information ?
1) Ascii has 128 value, but they are enumerated from 0-127 like most computer arrays. 0 means null.
2) Either the ascii is fit into 8 bit, or you are using the extended 8 bit version.
3) Define your own program that writes to a bytestream, then you can check the bytes yourself.
4) Most readable text are encoded using UTF, but things that only need the basic characters, such as computer code, can still use ascii.
1) How come there is 127 characters definable in ASCII coding ? It
should be 7-bit, which means 2 to the power of 7 which equals
128...where is the one character missing
The NUL character, whose ASCII code is 0. That's the one you missed.
2) When I save a textfile as a textfile.txt it should be saved in
ASCII coding right ? But when I write like 10 characters into the file
it has 10 bytes, which is 80 bits, shouldnt it be 70 ?
Storage systems (and main memory) tend to use a byte as the mininum piece of information to store, so a file full of standard ASCII characters waste one bit per character. Non english users give thanks for that, because it allowed to extend ASCII to 8 bits, giving codes to store accentuated vocals and things like that.
3) How do I save a file to a kind of ASCII code which has 7 bits per
character ?
Just make sure all your file contents are ASCII standard. You will not, however, recover those missing bits. A compression algorithm might take advantage of that to squeeze a text file a little, though.
4) Do some softweres still use the ASCII encoding for storing the
information ?
The vast majority of software use ASCII even to encode things that are not ASCII by themselves. Notable examples: e-mail, and the HTML source of this very page you are reading.
Stepping back a bit…
ASCII is an archaic, nearly obsolete character set. That said, nearly all character sets in use are a superset of ASCII and have compatible encodings. For example, Unicode has the UTF-8 encoding which maps the bytes for the first 128 characters the same as ASCII. Windows-1252 has 251 characters with the first 128 the same as ASCII.
Many modern programming environments use Unicode (at least for their source code and/or strings): Java, .NET, XML, HTML, ….
So, if you are reading a file, don't assume that it is ASCII. And, if you are writing a file, you could loose data if your programming environment uses Unicode and you force the output to be ASCII. In either case, the intended character set and encoding should be known by readers and writers.

What is encoding & decoding in communication?

Can someone please redirect me to some good references about the encoding and decoding in communication and different encoding techniques(unicode, base64, utf7) etc.
Wikipedia is always a good start.
Then there's always Joel Spolsky's article: The Absolute Minimum Every Software Developer Absolutely, Positively Must Know About Unicode and Character Sets (No Excuses!).
Note that the three things you name operate on different levels.
Unicode is a character set: a mapping between characters and numbers (code points).
UTF7 maps between code points and bytes.
base64 maps between bytes and bytes. (It mangles bytes so that they are represented by bytes in the ASCII range.)
The definitions of encoding and decoding are somewhat subjective.
Both are forms of transliteration, being the process of converting from one alphabet to another. ASCII to UTF8, ASCII to base64, etc are all examples of this.
What distinguishes the two is that "encoding" is often used when transliterating from a usable format to a transmission or intermediate format of some kind and decoding is the reverse. This is where the "subjective" bit comes in. ASCII to UTF8 can be viewed as encoding or decoding depending on the context.
Other formats like base64 are used almost universally for transmission only (eg binary data in email) and as such converting to them is almost universally called "encoding" and converting from as "decoding".
The important point to take away from all this is that something like ASCII or UTF8 is not magical in any way. All these formats are simply an agreed-upon encoding of information into a binary format. So ASCII 65 is 'A' for no other reason than that's the standard.
Unicode formats get more interesting because they make the distinction between the code point and the encoding. Unicode defines the code points for each character. The binary data is different for each encoding format. For example, see Unicode Character 'EURO-CURRENCY SIGN' (U+20A0) to see all the different binary values for one code point.
Regarding yours unicode, base64, utf7 (no one uses it, it might be utf8). They are not just "encoding & decoding" but encoding & decoding of text data.
Unicode is the way all real and possible characters are enumerated. It has nothing about encoding itself. UTFXX is set of encoding of unicode (converting code to actual bytes). most popular are UTF8 and UTF16. Very basically UTF8 is ASCII compatible (chars with codes < 128 are represented same way as ASCII), but other characters are represented by 2-3 bytes. UTF16 encode most of characters to 2 bytes.
Base64 has nothing about text data. It encodes generic binary data to text that consists of 64 printable ascii characters. It is used to transfer binary data, UTF8 and UTF16 via Email usually.

What is base 64 encoding used for?

I've heard people talking about "base 64 encoding" here and there. What is it used for?
When you have some binary data that you want to ship across a network, you generally don't do it by just streaming the bits and bytes over the wire in a raw format. Why? because some media are made for streaming text. You never know -- some protocols may interpret your binary data as control characters (like a modem), or your binary data could be screwed up because the underlying protocol might think that you've entered a special character combination (like how FTP translates line endings).
So to get around this, people encode the binary data into characters. Base64 is one of these types of encodings.
Why 64?
Because you can generally rely on the same 64 characters being present in many character sets, and you can be reasonably confident that your data's going to end up on the other side of the wire uncorrupted.
It's basically a way of encoding arbitrary binary data in ASCII text. It takes 4 characters per 3 bytes of data, plus potentially a bit of padding at the end.
Essentially each 6 bits of the input is encoded in a 64-character alphabet. The "standard" alphabet uses A-Z, a-z, 0-9 and + and /, with = as a padding character. There are URL-safe variants.
Wikipedia is a reasonably good source of more information.
Years ago, when mailing functionality was introduced, so that was utterly text based, as the time passed, need for attachments like image and media (audio,video etc) came into existence. When these attachments are sent over internet (which is basically in the form of binary data), the probability of binary data getting corrupt is high in its raw form. So, to tackle this problem BASE64 came along.
The problem with binary data is that it contains null characters which in some languages like C,C++ represent end of character string so sending binary data in raw form containing NULL bytes will stop a file from being fully read and lead in a corrupt data.
For Example :
In C and C++, this "null" character shows the end of a string. So "HELLO" is stored like this:
H E L L O
72 69 76 76 79 00
The 00 says "stop here".
Now let’s dive into how BASE64 encoding works.
Point to be noted : Length of the string should be in multiple of 3.
Example 1 :
String to be encoded : “ace”, Length=3
Convert each character to decimal.
a= 97, c= 99, e= 101
Change each decimal to 8-bit binary representation.
97= 01100001, 99= 01100011, 101= 01100101
Combined : 01100001 01100011 01100101
Separate in a group of 6-bit.
011000 010110 001101 100101
Calculate binary to decimal
011000= 24, 010110= 22, 001101= 13, 100101= 37
Covert decimal characters to base64 using base64 chart.
24= Y, 22= W, 13= N, 37= l
“ace” => “YWNl”
Example 2 :
String to be encoded : “abcd” Length=4, it's not multiple of 3. So to make string length multiple of 3 , we must add 2 bit padding to make length= 6. Padding bit is represented by “=” sign.
Point to be noted : One padding bit equals two zeroes 00 so two padding bit equals four zeroes 0000.
So lets start the process :–
Convert each character to decimal.
a= 97, b= 98, c= 99, d= 100
Change each decimal to 8-bit binary representation.
97= 01100001, 98= 01100010, 99= 01100011, 100= 01100100
Separate in a group of 6-bit.
011000, 010110, 001001, 100011, 011001, 00
so the last 6-bit is not complete so we insert two padding bit which equals four zeroes “0000”.
011000, 010110, 001001, 100011, 011001, 000000 ==
Now, it is equal. Two equals sign at the end show that 4 zeroes were added (helps in decoding).
Calculate binary to decimal.
011000= 24, 010110= 22, 001001= 9, 100011= 35, 011001= 25, 000000=0 ==
Covert decimal characters to base64 using base64 chart.
24= Y, 22= W, 9= j, 35= j, 25= Z, 0= A ==
“abcd” => “YWJjZA==”
Base-64 encoding is a way of taking binary data and turning it into text so that it's more easily transmitted in things like e-mail and HTML form data.
http://en.wikipedia.org/wiki/Base64
It's a textual encoding of binary data where the resultant text has nothing but letters, numbers and the symbols "+", "/" and "=". It's a convenient way to store/transmit binary data over media that is specifically used for textual data.
But why Base-64? The two alternatives for converting binary data into text that immediately spring to mind are:
Decimal: store the decimal value of each byte as three numbers: 045 112 101 037 etc. where each byte is represented by 3 bytes. The data bloats three-fold.
Hexadecimal: store the bytes as hex pairs: AC 47 0D 1A etc. where each byte is represented by 2 bytes. The data bloats two-fold.
Base-64 maps 3 bytes (8 x 3 = 24 bits) in 4 characters that span 6-bits (6 x 4 = 24 bits). The result looks something like "TWFuIGlzIGRpc3Rpb...". Therefore the bloating is only a mere 4/3 = 1.3333333 times the original.
Aside from what's already been said, two very common uses that have not been listed are
Hashes:
Hashes are one-way functions that transform a block of bytes into another block of bytes of a fixed size such as 128bit or 256bit (SHA/MD5). Converting the resulting bytes into Base64 makes it much easier to display the hash especially when you are comparing a checksum for integrity. Hashes are so often seen in Base64 that many people mistake Base64 itself as a hash.
Cryptography:
Since an encryption key does not have to be text but raw bytes it is sometimes necessary to store it in a file or database, which Base64 comes in handy for. Same with the resulting encrypted bytes.
Note that although Base64 is often used in cryptography is not a security mechanism. Anyone can convert the Base64 string back to its original bytes, so it should not be used as a means for protecting data, only as a format to display or store raw bytes more easily.
Certificates
x509 certificates in PEM format are base 64 encoded. http://how2ssl.com/articles/working_with_pem_files/
In the early days of computers, when telephone line inter-system communication was not particularly reliable, a quick & dirty method of verifying data integrity was used: "bit parity". In this method, every byte transmitted would have 7-bits of data, and the 8th would be 1 or 0, to force the total number of 1 bits in the byte to be even.
Hence 0x01 would be transmited as 0x81; 0x02 would be 0x82; 0x03 would remain 0x03 etc.
To further this system, when the ASCII character set was defined, only 00-7F were assigned characters. (Still today, all characters set in the range 80-FF are non-standard)
Many routers of the day put the parity check and byte translation into hardware, forcing the computers attached to them to deal strictly with 7-bit data. This force email attachments (and all other data, which is why HTTP & SMTP protocols are text-based), to be convert into a text-only format.
Few of the routers survived into the 90s. I severely doubt any of them are in use today.
From http://en.wikipedia.org/wiki/Base64
The term Base64 refers to a specific MIME content transfer encoding.
It is also used as a generic term for any similar encoding scheme that
encodes binary data by treating it numerically and translating it into
a base 64 representation. The particular choice of base is due to the
history of character set encoding: one can choose a set of 64
characters that is both part of the subset common to most encodings,
and also printable. This combination leaves the data unlikely to be
modified in transit through systems, such as email, which were
traditionally not 8-bit clean.
Base64 can be used in a variety of contexts:
Evolution and Thunderbird use Base64 to obfuscate e-mail passwords[1]
Base64 can be used to transmit and store text that might otherwise cause delimiter collision
Base64 is often used as a quick but insecure shortcut to obscure secrets without incurring the overhead of cryptographic key management
Spammers use Base64 to evade basic anti-spamming tools, which often do not decode Base64 and therefore cannot detect keywords in encoded
messages.
Base64 is used to encode character strings in LDIF files
Base64 is sometimes used to embed binary data in an XML file, using a syntax similar to ...... e.g.
Firefox's bookmarks.html.
Base64 is also used when communicating with government Fiscal Signature printing devices (usually, over serial or parallel ports) to
minimize the delay when transferring receipt characters for signing.
Base64 is used to encode binary files such as images within scripts, to avoid depending on external files.
Can be used to embed raw image data into a CSS property such as background-image.
Some transportation protocols only allow alphanumerical characters to be transmitted. Just imagine a situation where control characters are used to trigger special actions and/or that only supports a limited bit width per character. Base64 transforms any input into an encoding that only uses alphanumeric characters, +, / and the = as a padding character.
Base64 is a binary to a text encoding scheme that represents binary data in an ASCII string format. It is designed to carry data stored in binary format across the network channels.
Base64 mechanism uses 64 characters to encode. These characters consist of:
10 numeric value: i.e., 0,1,2,3,...,9
26 Uppercase alphabets: i.e., A,B,C,D,...,Z
26 Lowercase alphabets: i.e., a,b,c,d,...,z
2 special characters (these characters depends on operating system): i.e. +,/
How base64 works
The steps to encode a string with base64 algorithm are as follow:
Count the number of characters in a String. If it is not multiple of 3, then pad it with special characters (i.e. =) to make it multiple of 3.
Convert string to ASCII binary format 8-bit using the ASCII table.
After converting to binary format, divide binary data into chunks of 6-bits.
Convert chunks of 6-bit binary data to decimal numbers.
Convert decimals to string according to the base64 Index Table. This table can be an example, but as I said, 2 special characters may vary.
Now, we got the encoded version of the input string.
Let's make an example: convert string THS to base64 encoding string.
Count the number of characters: it is already a multiple of 3.
Convert to ASCII binary format 8-bit. We got (T)01010100 (H)01001000 (S)01010011
Divide binary data into chunks of 6-bits. We got 010101 000100 100001 010011
Convert chunks of 6-bit binary data to decimal numbers.We got 21 4 33 19
Convert decimals to string according to the base64 Index Table. We got VEhT
It's used for converting arbitrary binary data to ASCII text.
For example, e-mail attachments are sent this way.
“Base64 encoding schemes are commonly used when there is a need to encode binary data that needs be stored and transferred over media that are designed to deal with textual data. This is to ensure that the data remains intact without modification during transport”(Wiki, 2017)
Example could be the following: you have a web service that accept only ASCII chars. You want to save and then transfer user’s data to some other location (API) but recipient want receive untouched data. Base64 is for that. . . The only downside is that base64 encoding will require around 33% more space than regular strings.
Another Example:: uenc = url encoded = aHR0cDovL2xvYy5tYWdlbnRvLmNvbS9hc2ljcy1tZW4tcy1nZWwta2F5YW5vLXhpaS5odG1s = http://loc.querytip.com/asics-men-s-gel-kayano-xii.html.
As you can see we can’t put char “/” in URL if we want to send last visited URL as parameter because we would break attribute/value rule for “MOD rewrite” – GET parameter.
A full example would be: “http://loc.querytip.com/checkout/cart/add/uenc/http://loc.magento.com/asics-men-s-gel-kayano-xii.html/product/93/”
I use it in a practical sense when we transfer large binary objects (images) via web services. So when I am testing a C# web service using a python script, the binary object can be recreated with a little magic.
[In python]
import base64
imageAsBytes = base64.b64decode( dataFromWS )
The usage of Base64 I'm going to describe here is somewhat a hack. So if you don't like hacks, please do not go on.
I went into trouble when I discovered that MySQL's utf8 does not support 4-byte unicode characters since it uses a 3-byte version of utf8. So what I did to support full 4-byte unicode over MySQL's utf8? Well, base64 encode strings when storing into the database and base64 decode when retrieving.
Since base64 encoding and decoding is very fast, the above worked perfectly.
You have the following points to take note of:
Base64 encoding uses 33% more storage
Strings stored in the database wont be human readable (You could sell that as a feature that database strings use a basic form of encryption).
You could use the above method for any storage engine that does not support unicode.
Mostly, I've seen it used to encode binary data in contexts that can only handle ascii - or a simple - character sets.
The base64 is a binary to a text encoding scheme that represents binary data in an ASCII string format. base64 is designed to carry data stored in binary format across the channels. It takes any form of data and transforms it into a long string of plain text. Earlier we can not transfer a large amount of data like files because it is made up of 2⁸ bit bytes but our actual network uses 2⁷ bit bytes. This is where base64 encoding came into the picture. But, what actually does base64 mean?
let’s understand the meaning of base64.
base64 = base+64
we can call base64 as a radix-64 representation.base64 uses only 6-bits(2⁶ = 64 characters) to ensure the printable data is human readable. but, how? we can also write base65 or base78, but why only 64? let’s prove it.
base64 encoding contains 64 characters to encode any string.
base64 contains:
10 numeric value i.e., 0,1,2,3,…..9.
26 Uppercase alphabets i.e., A,B,C,D,…….Z.
26 Lowercase alphabets i.e., a,b,c,d,……..z.
two special characters i.e., +,/. Depends upon your OS.
The steps followed by the base64 algorithm are as follow:
count the number of characters in a String.
If it is not multiple of 3 pad with special character i.e., = to
make it multiple of 3.
Encode the string in ASCII format.
Now, it will convert the ASCII to binary format 8-bit each.
After converting to binary format, it will divide binary data into
chunks of 6-bits each.
The chunks of 6-bit binary data will now be converted to decimal
number format.
Using the base64 Index Table, the decimals will be again converted
to a string according to the table format.
Finally, we will get the encoded version of our input string.
To expand a bit on what Brad is saying: many transport mechanisms for email and Usenet and other ways of moving data are not "8 bit clean", which means that characters outside the standard ascii character set might be mangled in transit - for instance, 0x0D might be seen as a carriage return, and turned into a carriage return and line feed. Base 64 maps all the binary characters into several standard ascii letters and numbers and punctuation so they won't be mangled this way.
One hexadecimal digit is of one nibble (4 bits). Two nibbles make 8 bits which are also called 1 byte.
MD5 generates a 128-bit output which is represented using a sequence of 32 hexadecimal digits, which in turn are 32*4=128 bits. 128 bits make 16 bytes (since 1 byte is 8 bits).
Each Base64 character encodes 6 bits (except the last non-pad character which can encode 2, 4 or 6 bits; and final pad characters, if any). Therefore, per Base64 encoding, a 128-bit hash requires at least ⌈128/6⌉ = 22 characters, plus pad if any.
Using base64, we can produce the encoded output of our desired length (6, 8, or 10).
If we choose to decide 8 char long output, it occupies only 8 bytes whereas it was occupying 16 bytes for 128-bit hash output.
So, in addition to security, base64 encoding is also used to reduce the space consumed.
Base64 can be used for many purposes.
The primary reason is to convert binary data to something passable.
I sometimes use it to pass JSON data around from one site to another, store information
in cookies about a user.
Note:
You "can" use it for encryption - I don't see why people say you can't, and that it's not encryption, although it would be easily breakable and is frowned upon. Encryption means nothing more than converting one string of data to another string of data that can be either later decrypted or not, and that's what base64 does.