Group rows that match sub string in a column using scala - scala

I have a fol df:
Zip | Name | id |
abc | xyz | 1 |
def | wxz | 2 |
abc | wex | 3 |
bcl | rea | 4 |
abc | txc | 5 |
def | rfx | 6 |
abc | abc | 7 |
I need to group all the names that contain 'x' based on same Zip using scala
Desired Output:
Zip | Count |
abc | 3 |
def | 2 |
Any help is highly appreciated

As #Shaido mentioned in the comment above, all you need is filter, groupBy and aggregation as
import org.apache.spark.sql.functions._
fol.filter(col("Name").contains("x")) //filtering the rows that has x in the Name column
.groupBy("Zip") //grouping by Zip column
.agg(count("Zip").as("Count")) //counting the rows in each groups
.show(false)
and you should have the desired output
+---+-----+
|Zip|Count|
+---+-----+
|abc|3 |
|def|2 |
+---+-----+

You want to groupBy bellow data frame.
+---+----+---+
|zip|name| id|
+---+----+---+
|abc| xyz| 1|
|def| wxz| 2|
|abc| wex| 3|
|bcl| rea| 4|
|abc| txc| 5|
|def| rfx| 6|
|abc| abc| 7|
+---+----+---+
then you can simply use groupBy function with passing column parameter and followed by count will give you the result.
val groupedDf: DataFrame = df.groupBy("zip").count()
groupedDf.show()
// +---+-----+
// |zip|count|
// +---+-----+
// |bcl| 1|
// |abc| 4|
// |def| 2|
// +---+-----+

Related

Spark adding indexes to dataframe and append other dataset that doesn't have index

I have a dataset that has column userid and index values.
+---------+--------+
| userid | index|
+---------+--------+
| user1| 1|
| user2| 2|
| user3| 3|
| user4| 4|
| user5| 5|
| user6| 6|
| user7| 7|
| user8| 8|
| user9| 9|
| user10| 10|
+---------+--------+
I want to append a new data frame to it and add an index to the newly added columns.
The userid is unique and the existing data frame will not have the Dataframe 2 user ids.
+----------+
| userid |
+----------+
| user11|
| user21|
| user41|
| user51|
| user64|
+----------+
The expected output with newly added userid and index
+---------+--------+
| userid | index|
+---------+--------+
| user1| 1|
| user2| 2|
| user3| 3|
| user4| 4|
| user5| 5|
| user6| 6|
| user7| 7|
| user8| 8|
| user9| 9|
| user10| 10|
| user11| 11|
| user21| 12|
| user41| 13|
| user51| 14|
| user64| 15|
+---------+--------+
Is it possible to achive this by passing a max index value and start index for second Dataframe from given index value.
If the userid has some ordering, then you can use the rownumber function. Even if it does not have, then you can add an id using monotonically_increasing_id(). For now I assume that userid can be ordered. Then you can do this:
from pyspark.sql import functions as F
from pyspark.sql.window import Window
df_merge = df1.select('userid').union(df2.select('userid'))
w=Window.orderBy('userid')
df_result = df_merge.withColumn('indexid',F.row_number().over(w))
EDIT : After discussions in comment.
#%% Test data and imports
import pyspark.sql.functions as F
from pyspark.sql import Window
df = sqlContext.createDataFrame([('a',100),('ab',50),('ba',300),('ced',60),('d',500)],schema=['userid','index'])
df1 = sqlContext.createDataFrame([('fgh',100),('ff',50),('fe',300),('er',60),('fi',500)],schema=['userid','dummy'])
#%%
#%% Merge the two dataframes, with a null columns as the index
df1=df1.withColumn('index', F.lit(None))
df_merge = df.select(df.columns).union(df1.select(df.columns))
#%%Define a window to arrange the newly added rows at the last and order them by userid
#%% The user id, even though random strings, can be ordered
w= Window.orderBy(F.col('index').asc_nulls_last(),F.col('userid'))# if possible add a partition column here, otherwise all your data will come in one partition, consider salting
#%% For the newly added rows, define index as the maximum value + increment of number of rows in main dataframe
df_final = df_merge.withColumn("index_new",F.when(~F.col('index').isNull(),F.col('index')).otherwise((F.last(F.col('index'),ignorenulls=True).over(w))+F.sum(F.lit(1)).over(w)))
#%% If number of rows in main dataframe is huge, then add an offset in the above line
df_final.show()
+------+-----+---------+
|userid|index|index_new|
+------+-----+---------+
| ab| 50| 50|
| ced| 60| 60|
| a| 100| 100|
| ba| 300| 300|
| d| 500| 500|
| er| null| 506|
| fe| null| 507|
| ff| null| 508|
| fgh| null| 509|
| fi| null| 510|
+------+-----+---------+

Spark - Divide a dataframe into n number of records

I have a dataframe with 2 or more columns and 1000 records. I want to split the data into 100 records chunks randomly without any conditions.
So expected output in records count should be something like this,
[(1,2....100),(101,102,103...200),.....,(900,901...1000)]
Here's the solution that worked for my use case after trying different approaches:
https://stackoverflow.com/a/61276734/12322995
As #Shaido said randomsplit is ther for splitting dataframe is popular approach..
Thought differently about repartitionByRange with => spark 2.3
repartitionByRange public Dataset repartitionByRange(int
numPartitions,
scala.collection.Seq partitionExprs) Returns a new Dataset partitioned by the given
partitioning expressions into numPartitions. The resulting Dataset is
range partitioned. At least one partition-by expression must be
specified. When no explicit sort order is specified, "ascending nulls
first" is assumed. Parameters: numPartitions - (undocumented)
partitionExprs - (undocumented) Returns: (undocumented) Since:
2.3.0
package examples
import org.apache.log4j.Level
import org.apache.spark.sql.{Dataset, SparkSession}
object RepartitionByRange extends App {
val logger = org.apache.log4j.Logger.getLogger("org")
logger.setLevel(Level.WARN)
val spark = SparkSession.builder().appName(getClass.getName).master("local").getOrCreate()
val sc = spark.sparkContext
import spark.implicits._
val t1 = sc.parallelize(0 until 1000).toDF("id")
val repartitionedOrders: Dataset[String] = t1.repartitionByRange(10, $"id")
.mapPartitions(rows => {
val idsInPartition = rows.map(row => row.getAs[Int]("id")).toSeq.sorted.mkString(",")
Iterator(idsInPartition)
})
repartitionedOrders.show(false)
println("number of chunks or partitions :" + repartitionedOrders.rdd.getNumPartitions)
}
Result :
+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|value |
+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99 |
|100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199|
|200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299|
|300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,328,329,330,331,332,333,334,335,336,337,338,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,367,368,369,370,371,372,373,374,375,376,377,378,379,380,381,382,383,384,385,386,387,388,389,390,391,392,393,394,395,396,397,398,399|
|400,401,402,403,404,405,406,407,408,409,410,411,412,413,414,415,416,417,418,419,420,421,422,423,424,425,426,427,428,429,430,431,432,433,434,435,436,437,438,439,440,441,442,443,444,445,446,447,448,449,450,451,452,453,454,455,456,457,458,459,460,461,462,463,464,465,466,467,468,469,470,471,472,473,474,475,476,477,478,479,480,481,482,483,484,485,486,487,488,489,490,491,492,493,494,495,496,497,498,499|
|500,501,502,503,504,505,506,507,508,509,510,511,512,513,514,515,516,517,518,519,520,521,522,523,524,525,526,527,528,529,530,531,532,533,534,535,536,537,538,539,540,541,542,543,544,545,546,547,548,549,550,551,552,553,554,555,556,557,558,559,560,561,562,563,564,565,566,567,568,569,570,571,572,573,574,575,576,577,578,579,580,581,582,583,584,585,586,587,588,589,590,591,592,593,594,595,596,597,598,599|
|600,601,602,603,604,605,606,607,608,609,610,611,612,613,614,615,616,617,618,619,620,621,622,623,624,625,626,627,628,629,630,631,632,633,634,635,636,637,638,639,640,641,642,643,644,645,646,647,648,649,650,651,652,653,654,655,656,657,658,659,660,661,662,663,664,665,666,667,668,669,670,671,672,673,674,675,676,677,678,679,680,681,682,683,684,685,686,687,688,689,690,691,692,693,694,695,696,697,698,699|
|700,701,702,703,704,705,706,707,708,709,710,711,712,713,714,715,716,717,718,719,720,721,722,723,724,725,726,727,728,729,730,731,732,733,734,735,736,737,738,739,740,741,742,743,744,745,746,747,748,749,750,751,752,753,754,755,756,757,758,759,760,761,762,763,764,765,766,767,768,769,770,771,772,773,774,775,776,777,778,779,780,781,782,783,784,785,786,787,788,789,790,791,792,793,794,795,796,797,798,799|
|800,801,802,803,804,805,806,807,808,809,810,811,812,813,814,815,816,817,818,819,820,821,822,823,824,825,826,827,828,829,830,831,832,833,834,835,836,837,838,839,840,841,842,843,844,845,846,847,848,849,850,851,852,853,854,855,856,857,858,859,860,861,862,863,864,865,866,867,868,869,870,871,872,873,874,875,876,877,878,879,880,881,882,883,884,885,886,887,888,889,890,891,892,893,894,895,896,897,898,899|
|900,901,902,903,904,905,906,907,908,909,910,911,912,913,914,915,916,917,918,919,920,921,922,923,924,925,926,927,928,929,930,931,932,933,934,935,936,937,938,939,940,941,942,943,944,945,946,947,948,949,950,951,952,953,954,955,956,957,958,959,960,961,962,963,964,965,966,967,968,969,970,971,972,973,974,975,976,977,978,979,980,981,982,983,984,985,986,987,988,989,990,991,992,993,994,995,996,997,998,999|
+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
number of chunks or partitions : 10
UPDATE : randomsplit example :
import spark.implicits._
val t1 = sc.parallelize(0 until 1000).toDF("id")
println("With Random Split ")
val dfarray = t1.randomSplit(Array(1, 1, 1, 1, 1, 1, 1, 1, 1, 1));
println("number of dataframes " + dfarray.length + "element order is not guaranteed ")
dfarray.foreach {
df => df.show
}
Result : Will be split in to 10 dataframes and order is not guaranteed.
With Random Split
number of dataframes 10element order is not guaranteed
+---+
| id|
+---+
| 2|
| 10|
| 16|
| 30|
| 36|
| 46|
| 51|
| 91|
|100|
|121|
|136|
|138|
|149|
|152|
|159|
|169|
|198|
|199|
|220|
|248|
+---+
only showing top 20 rows
+---+
| id|
+---+
| 26|
| 40|
| 45|
| 54|
| 63|
| 72|
| 76|
|107|
|129|
|137|
|142|
|145|
|153|
|162|
|173|
|179|
|196|
|208|
|214|
|232|
+---+
only showing top 20 rows
+---+
| id|
+---+
| 7|
| 12|
| 31|
| 32|
| 38|
| 42|
| 53|
| 61|
| 68|
| 73|
| 80|
| 89|
| 96|
|115|
|117|
|118|
|131|
|132|
|139|
|146|
+---+
only showing top 20 rows
+---+
| id|
+---+
| 0|
| 24|
| 35|
| 57|
| 58|
| 65|
| 77|
| 78|
| 84|
| 86|
| 90|
| 97|
|156|
|158|
|168|
|174|
|182|
|197|
|218|
|242|
+---+
only showing top 20 rows
+---+
| id|
+---+
| 1|
| 3|
| 17|
| 18|
| 19|
| 33|
| 70|
| 71|
| 74|
| 83|
|102|
|104|
|108|
|109|
|122|
|128|
|143|
|150|
|154|
|157|
+---+
only showing top 20 rows
+---+
| id|
+---+
| 14|
| 15|
| 29|
| 44|
| 64|
| 75|
| 88|
|103|
|110|
|113|
|116|
|120|
|124|
|135|
|155|
|213|
|221|
|238|
|241|
|251|
+---+
only showing top 20 rows
+---+
| id|
+---+
| 5|
| 9|
| 21|
| 22|
| 23|
| 25|
| 27|
| 47|
| 52|
| 55|
| 60|
| 62|
| 69|
| 93|
|111|
|114|
|141|
|144|
|161|
|164|
+---+
only showing top 20 rows
+---+
| id|
+---+
| 13|
| 20|
| 39|
| 41|
| 49|
| 56|
| 67|
| 85|
| 87|
| 92|
|105|
|106|
|126|
|127|
|160|
|165|
|166|
|171|
|175|
|184|
+---+
only showing top 20 rows
+---+
| id|
+---+
| 4|
| 34|
| 50|
| 79|
| 81|
|101|
|119|
|123|
|133|
|147|
|163|
|170|
|180|
|181|
|193|
|202|
|207|
|222|
|226|
|233|
+---+
only showing top 20 rows
+---+
| id|
+---+
| 6|
| 8|
| 11|
| 28|
| 37|
| 43|
| 48|
| 59|
| 66|
| 82|
| 94|
| 95|
| 98|
| 99|
|112|
|125|
|130|
|134|
|140|
|183|
+---+
only showing top 20 rows
Since I want the data to be evenly distributed and to be able to use the chunks separately or in iterative manner using randomSplit doesn't work as it may leave empty dataframes or unequal distribution.
So using grouped can be one of the most feasible solutions here if you don't mind calling collect on your dataframe.
Eg: val newdf = df.collect.grouped(10)
That gives an Iterator[List[org.apache.spark.sql.Row]] = non-empty iterator. Can also convert it into list by adding .toList at the end
Another possible solution if we don't want Array chunks of data from the dataframe but still want to partition the data with equal counts of records we can try to use countApprox by adjusting timeout and confidence as required. Then divide that with number of records we need in a partition, which can be later used as number of partitions when using repartition or Coalesce.
countApprox instead of count because it is less expensive operation and you can feel the difference when the data size is huge
val approxCount = df.rdd.countApprox(timeout = 1000L,confidence = 0.95).getFinalValue().high
val numOfPartitions = Math.max(Math.round(approxCount / 100), 1).toInt
df.repartition(numOfPartitions)

How to select rows using Window function? [duplicate]

This question already has answers here:
How to select the first row of each group?
(9 answers)
Closed 1 year ago.
I have the following DataFrame df in Spark:
+------------+---------+-----------+
|OrderID | Type| Qty|
+------------+---------+-----------+
| 571936| 62800| 1|
| 571936| 62800| 1|
| 571936| 62802| 3|
| 661455| 72800| 1|
| 661455| 72801| 1|
I need to select the row that has a largest value of Qty per each unique OrderID or the last rows per OrderID if all Qty are the same (e.g. as for 661455). The expected result:
+------------+---------+-----------+
|OrderID | Type| Qty|
+------------+---------+-----------+
| 571936| 62802| 3|
| 661455| 72801| 1|
Any ides how to get it?
This is what I tried:
val partitionWindow = Window.partitionBy(col("OrderID")).orderBy(col("Qty").asc)
val result = df.over(partitionWindow)
scala> val w = Window.partitionBy("OrderID").orderBy("Qty")
scala> val w1 = Window.partitionBy("OrderID")
scala> df.show()
+-------+-----+---+
|OrderID| Type|Qty|
+-------+-----+---+
| 571936|62800| 1|
| 571936|62800| 1|
| 571936|62802| 3|
| 661455|72800| 1|
| 661455|72801| 1|
+-------+-----+---+
scala> df.withColumn("rn", row_number.over(w)).withColumn("mxrn", max("rn").over(w1)).filter($"mxrn" === $"rn").drop("mxrn","rn").show
+-------+-----+---+
|OrderID| Type|Qty|
+-------+-----+---+
| 661455|72801| 1|
| 571936|62802| 3|
+-------+-----+---+

Sum over another column returning 'col should be column error'

I'm trying to add a new column where by it shows the sum of a double (things to sum column) based on the respective ID in the ID column. this however is currently throwing the 'col should be column error'
df = df.withColumn('sum_column', (df.groupBy('id').agg({'thing_to_sum': 'sum'})))
Example Data Set:
| id | thing_to_sum | sum_column |
|----|--------------|------------
| 1 | 5 | 7 |
| 1 | 2 | 7 |
| 2 | 4 | 4 |
Any help on this would be greatly appreciated.
Also any reference on the most efficient way to do this would also be appreciated.
You can register any DataFrame as a temporary table to query it via SQLContext.sql.
myValues = [(1,5),(1,2),(2,4),(2,3),(2,1)]
df = sqlContext.createDataFrame(myValues,['id','thing_to_sum'])
df.show()
+---+------------+
| id|thing_to_sum|
+---+------------+
| 1| 5|
| 1| 2|
| 2| 4|
| 2| 3|
| 2| 1|
+---+------------+
df.registerTempTable('table_view')
df1=sqlContext.sql(
'select id, thing_to_sum, sum(thing_to_sum) over (partition by id) as sum_column from table_view'
)
df1.show()
+---+------------+----------+
| id|thing_to_sum|sum_column|
+---+------------+----------+
| 1| 5| 7|
| 1| 2| 7|
| 2| 4| 8|
| 2| 3| 8|
| 2| 1| 8|
+---+------------+----------+
Think i found the solution to my own question but advice would still be appreciated:
sum_calc = F.sum(df.thing_to_sum).over(Window.partitionBy("id"))
df = df.withColumn("sum_column", sum_calc)

How to append column values in Spark SQL?

I have the below table:
+-------+---------+---------+
|movieId|movieName| genre|
+-------+---------+---------+
| 1| example1| action|
| 1| example1| thriller|
| 1| example1| romance|
| 2| example2|fantastic|
| 2| example2| action|
+-------+---------+---------+
What I am trying to achieve is to append the genre values together where the id and name are the same. Like this:
+-------+---------+---------------------------+
|movieId|movieName| genre |
+-------+---------+---------------------------+
| 1| example1| action|thriller|romance |
| 2| example2| action|fantastic |
+-------+---------+---------------------------+
Use groupBy and collect_list to get a list of all items with the same movie name. Then combine these to a string using concat_ws (if the order is important, first use sort_array). Small example with given sample dataframe:
val df2 = df.groupBy("movieId", "movieName")
.agg(collect_list($"genre").as("genre"))
.withColumn("genre", concat_ws("|", sort_array($"genre")))
Gives the result:
+-------+---------+-----------------------+
|movieId|movieName|genre |
+-------+---------+-----------------------+
|1 |example1 |action|thriller|romance|
|2 |example2 |action|fantastic |
+-------+---------+-----------------------+