Spark java.lang.NullPointerException when using tuples - scala

I am using the GraphX API for spark to build a graph and process it with Pregel API. The error does not happen if I return an argument tuple from vprog function, but if I return a new tuple using the same tuple, I get null point error.
Here is the relevant code:
val verticesRDD = cleanDtaDF.select("ChildHash", "DN").rdd.map(row => (row(0).toString.toLong, (row(1).toString.toDouble,row(0).toString.toLong)))
val edgesRDD = (rawDtaDF.select("ChildHash", "ParentHash", "dealer_code", "dealer_customer_number", "parent_dealer_cust_number").rdd
.map(row => Edge(row.get(0).toString.toLong, row.get(1).toString.toLong, (row(3) + " is a child of " + row(4), " when dealer is " + row.get(2)))))
val myGraph = Graph(verticesRDD, edgesRDD)
def vprog(vertexId: VertexId, vertexDTA:(Double, Long), msg: Double): (Double, Long) = {
(vertexDTA._1, vertexDTA._2)
}
val result = myGraph.pregel(0.0, 1, activeDirection = EdgeDirection.Out)(vprog,t => Iterator((t.dstId, t.srcAttr._2)),(x, y) => x + y)
The error does not happen if I make a simple change to vprog(...)--not access the tuples' members:
def vprog(vertexId: VertexId, vertexDTA:(Double, Long), msg: Double): (Double, Long) = {
vertexDTA
}
The error is
[Stage 101:> (0 + 0) / 200][Stage 102:> (0 + 4) / 200]18/03/10 20:43:16 WARN scheduler.TaskSetManager: Lost task 1.0 in stage 102.0 (TID 5959, ue1lslaved25.na.aws.cat.com, executor 146): java.lang.NullPointerException
at $line69.$read$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw.vprog(<console>:60)
at $line70.$read$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$anonfun$2.apply(<console>:75)
at $line70.$read$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$anonfun$2.apply(<console>:75)
at org.apache.spark.graphx.Pregel$$anonfun$1.apply(Pregel.scala:125)
at org.apache.spark.graphx.Pregel$$anonfun$1.apply(Pregel.scala:125)
at org.apache.spark.graphx.impl.VertexPartitionBaseOps.map(VertexPartitionBaseOps.scala:61)
at org.apache.spark.graphx.impl.GraphImpl$$anonfun$5.apply(GraphImpl.scala:129)
at org.apache.spark.graphx.impl.GraphImpl$$anonfun$5.apply(GraphImpl.scala:129)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
at org.apache.spark.storage.memory.MemoryStore.putIteratorAsValues(MemoryStore.scala:216)
at org.apache.spark.storage.BlockManager$$anonfun$doPutIterator$1.apply(BlockManager.scala:988)
at org.apache.spark.storage.BlockManager$$anonfun$doPutIterator$1.apply(BlockManager.scala:979)
at org.apache.spark.storage.BlockManager.doPut(BlockManager.scala:919)
at org.apache.spark.storage.BlockManager.doPutIterator(BlockManager.scala:979)
at org.apache.spark.storage.BlockManager.getOrElseUpdate(BlockManager.scala:697)
at org.apache.spark.rdd.RDD.getOrCompute(RDD.scala:334)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:285)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:96)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:53)
at org.apache.spark.scheduler.Task.run(Task.scala:99)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:322)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
at java.lang.Thread.run(Thread.java:745)

This issue has a simple explanation. It's not related with Spark or Graphx.
Having the function (just strip out irrelevant items from the original):
def vprog(vertexDTA:(Double, Long)): (Double, Long) = {
(vertexDTA._1, vertexDTA._2)
}
If the arg vertexDTA is null, both vertexDTA._1 and vertexDTA._2 will throw NullPointerException.
If we change the function to
def vprog(vertexDTA:(Double, Long)): (Double, Long) = {
vertexDTA
}
when the arg is null, it simply returns it, there is no access to tuple's members, so no NPE.

Related

Getting NullPointerException while looping DataFrame and access to outer scope variable [duplicate]

I have a problem executing a Spark application.
Source code:
// Read table From HDFS
val productInformation = spark.table("temp.temp_table1")
val dict = spark.table("temp.temp_table2")
// Custom UDF
val countPositiveSimilarity = udf[Long, Seq[String], Seq[String]]((a, b) =>
dict.filter(
(($"first".isin(a: _*) && $"second".isin(b: _*)) || ($"first".isin(b: _*) && $"second".isin(a: _*))) && $"similarity" > 0.7
).count
)
val result = productInformation.withColumn("positive_count", countPositiveSimilarity($"title", $"internal_category"))
// Error occurs!
result.show
Error message:
org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 54.0 failed 4 times, most recent failure: Lost task 0.3 in stage 54.0 (TID 5887, ip-10-211-220-33.ap-northeast-2.compute.internal, executor 150): org.apache.spark.SparkException: Failed to execute user defined function($anonfun$1: (array<string>, array<string>) => bigint)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.processNext(Unknown Source)
at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$8$$anon$1.hasNext(WholeStageCodegenExec.scala:377)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:231)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:225)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$25.apply(RDD.scala:826)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$25.apply(RDD.scala:826)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
at org.apache.spark.scheduler.Task.run(Task.scala:99)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:282)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
Caused by: java.lang.NullPointerException
at $anonfun$1.apply(<console>:45)
at $anonfun$1.apply(<console>:43)
... 16 more
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1435)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1423)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1422)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1422)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:802)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:802)
at scala.Option.foreach(Option.scala:257)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:802)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1650)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1605)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1594)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:628)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1918)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1931)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1944)
at org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:333)
at org.apache.spark.sql.execution.CollectLimitExec.executeCollect(limit.scala:38)
at org.apache.spark.sql.Dataset$$anonfun$org$apache$spark$sql$Dataset$$execute$1$1.apply(Dataset.scala:2371)
at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:57)
at org.apache.spark.sql.Dataset.withNewExecutionId(Dataset.scala:2765)
at org.apache.spark.sql.Dataset.org$apache$spark$sql$Dataset$$execute$1(Dataset.scala:2370)
at org.apache.spark.sql.Dataset.org$apache$spark$sql$Dataset$$collect(Dataset.scala:2377)
at org.apache.spark.sql.Dataset$$anonfun$head$1.apply(Dataset.scala:2113)
at org.apache.spark.sql.Dataset$$anonfun$head$1.apply(Dataset.scala:2112)
at org.apache.spark.sql.Dataset.withTypedCallback(Dataset.scala:2795)
at org.apache.spark.sql.Dataset.head(Dataset.scala:2112)
at org.apache.spark.sql.Dataset.take(Dataset.scala:2327)
at org.apache.spark.sql.Dataset.showString(Dataset.scala:248)
at org.apache.spark.sql.Dataset.show(Dataset.scala:636)
at org.apache.spark.sql.Dataset.show(Dataset.scala:595)
at org.apache.spark.sql.Dataset.show(Dataset.scala:604)
... 48 elided
Caused by: org.apache.spark.SparkException: Failed to execute user defined function($anonfun$1: (array<string>, array<string>) => bigint)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.processNext(Unknown Source)
at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$8$$anon$1.hasNext(WholeStageCodegenExec.scala:377)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:231)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:225)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$25.apply(RDD.scala:826)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$25.apply(RDD.scala:826)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
at org.apache.spark.scheduler.Task.run(Task.scala:99)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:282)
... 3 more
Caused by: java.lang.NullPointerException
at $anonfun$1.apply(<console>:45)
at $anonfun$1.apply(<console>:43)
... 16 more
I have checked whether productInformation and dict have null value in Columns. But there are no null values.
Can anyone help me?
I attached example code to let you know more details:
case class Target(wordListOne: Seq[String], WordListTwo: Seq[String])
val targetData = Seq(Target(Seq("Spark", "Wrong", "Something"), Seq("Java", "Grape", "Banana")),
Target(Seq("Java", "Scala"), Seq("Scala", "Banana")),
Target(Seq(""), Seq("Grape", "Banana")),
Target(Seq(""), Seq("")))
val targets = spark.createDataset(targetData)
case class WordSimilarity(first: String, second: String, similarity: Double)
val similarityData = Seq(WordSimilarity("Spark", "Java", 0.8),
WordSimilarity("Scala", "Spark", 0.9),
WordSimilarity("Java", "Scala", 0.9),
WordSimilarity("Apple", "Grape", 0.66),
WordSimilarity("Scala", "Apple", -0.1),
WordSimilarity("Gine", "Spark", 0.1))
val dict = spark.createDataset(similarityData)
val countPositiveSimilarity = udf[Long, Seq[String], Seq[String]]((a, b) =>
dict.filter(
(($"first".isin(a: _*) && $"second".isin(b: _*)) || ($"first".isin(b: _*) && $"second".isin(a: _*))) && $"similarity" > 0.7
).count
)
val countDF = targets.withColumn("positive_count", countPositiveSimilarity($"wordListOne", $"wordListTwo"))
This is an example code and is similar to my original code.
Example code operates well. Which point should I check in original code and data?
Very interesting question. I have to do some search, and here is my though. Hope this will help you a little bit.
When you create Dataset via createDataset, spark will assign this dataset with LocalRelation logical query plan.
def createDataset[T : Encoder](data: Seq[T]): Dataset[T] = {
val enc = encoderFor[T]
val attributes = enc.schema.toAttributes
val encoded = data.map(d => enc.toRow(d).copy())
val plan = new LocalRelation(attributes, encoded)
Dataset[T](self, plan)
}
Follow this link:
LocalRelation is a leaf logical plan that allow functions like collect or take to be executed locally, i.e. without using Spark executors.
And, it's true as isLocal method point out
/**
* Returns true if the `collect` and `take` methods can be run locally
* (without any Spark executors).
*
* #group basic
* #since 1.6.0
*/
def isLocal: Boolean = logicalPlan.isInstanceOf[LocalRelation]
Obviously, You can check out your 2 datasets is local.
And, the show method actually call take internally.
private[sql] def showString(_numRows: Int, truncate: Int = 20): String = {
val numRows = _numRows.max(0)
val takeResult = toDF().take(numRows + 1)
val hasMoreData = takeResult.length > numRows
val data = takeResult.take(numRows)
So, with those envidences, I think the call countDF.show is executed, it will behave simliar as when you call count on dict dataset from driver, number of call times is number of records of targets. And, the dict dataset of course doesn't need to be local for the show on countDF work.
You can try to save countDF, it will give you exception same as first case
org.apache.spark.SparkException: Failed to execute user defined function($anonfun$1: (array<string>, array<string>) => bigint)
You can not use a Dataframe inside of an udf. You will need to join productInformation and dict, and do the udf logic after the join.

spark - in udf of dataframe pass reference another data frame [duplicate]

I have a problem executing a Spark application.
Source code:
// Read table From HDFS
val productInformation = spark.table("temp.temp_table1")
val dict = spark.table("temp.temp_table2")
// Custom UDF
val countPositiveSimilarity = udf[Long, Seq[String], Seq[String]]((a, b) =>
dict.filter(
(($"first".isin(a: _*) && $"second".isin(b: _*)) || ($"first".isin(b: _*) && $"second".isin(a: _*))) && $"similarity" > 0.7
).count
)
val result = productInformation.withColumn("positive_count", countPositiveSimilarity($"title", $"internal_category"))
// Error occurs!
result.show
Error message:
org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 54.0 failed 4 times, most recent failure: Lost task 0.3 in stage 54.0 (TID 5887, ip-10-211-220-33.ap-northeast-2.compute.internal, executor 150): org.apache.spark.SparkException: Failed to execute user defined function($anonfun$1: (array<string>, array<string>) => bigint)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.processNext(Unknown Source)
at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$8$$anon$1.hasNext(WholeStageCodegenExec.scala:377)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:231)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:225)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$25.apply(RDD.scala:826)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$25.apply(RDD.scala:826)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
at org.apache.spark.scheduler.Task.run(Task.scala:99)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:282)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
Caused by: java.lang.NullPointerException
at $anonfun$1.apply(<console>:45)
at $anonfun$1.apply(<console>:43)
... 16 more
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1435)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1423)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1422)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1422)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:802)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:802)
at scala.Option.foreach(Option.scala:257)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:802)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1650)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1605)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1594)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:628)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1918)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1931)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1944)
at org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:333)
at org.apache.spark.sql.execution.CollectLimitExec.executeCollect(limit.scala:38)
at org.apache.spark.sql.Dataset$$anonfun$org$apache$spark$sql$Dataset$$execute$1$1.apply(Dataset.scala:2371)
at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:57)
at org.apache.spark.sql.Dataset.withNewExecutionId(Dataset.scala:2765)
at org.apache.spark.sql.Dataset.org$apache$spark$sql$Dataset$$execute$1(Dataset.scala:2370)
at org.apache.spark.sql.Dataset.org$apache$spark$sql$Dataset$$collect(Dataset.scala:2377)
at org.apache.spark.sql.Dataset$$anonfun$head$1.apply(Dataset.scala:2113)
at org.apache.spark.sql.Dataset$$anonfun$head$1.apply(Dataset.scala:2112)
at org.apache.spark.sql.Dataset.withTypedCallback(Dataset.scala:2795)
at org.apache.spark.sql.Dataset.head(Dataset.scala:2112)
at org.apache.spark.sql.Dataset.take(Dataset.scala:2327)
at org.apache.spark.sql.Dataset.showString(Dataset.scala:248)
at org.apache.spark.sql.Dataset.show(Dataset.scala:636)
at org.apache.spark.sql.Dataset.show(Dataset.scala:595)
at org.apache.spark.sql.Dataset.show(Dataset.scala:604)
... 48 elided
Caused by: org.apache.spark.SparkException: Failed to execute user defined function($anonfun$1: (array<string>, array<string>) => bigint)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.processNext(Unknown Source)
at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$8$$anon$1.hasNext(WholeStageCodegenExec.scala:377)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:231)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:225)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$25.apply(RDD.scala:826)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$25.apply(RDD.scala:826)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
at org.apache.spark.scheduler.Task.run(Task.scala:99)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:282)
... 3 more
Caused by: java.lang.NullPointerException
at $anonfun$1.apply(<console>:45)
at $anonfun$1.apply(<console>:43)
... 16 more
I have checked whether productInformation and dict have null value in Columns. But there are no null values.
Can anyone help me?
I attached example code to let you know more details:
case class Target(wordListOne: Seq[String], WordListTwo: Seq[String])
val targetData = Seq(Target(Seq("Spark", "Wrong", "Something"), Seq("Java", "Grape", "Banana")),
Target(Seq("Java", "Scala"), Seq("Scala", "Banana")),
Target(Seq(""), Seq("Grape", "Banana")),
Target(Seq(""), Seq("")))
val targets = spark.createDataset(targetData)
case class WordSimilarity(first: String, second: String, similarity: Double)
val similarityData = Seq(WordSimilarity("Spark", "Java", 0.8),
WordSimilarity("Scala", "Spark", 0.9),
WordSimilarity("Java", "Scala", 0.9),
WordSimilarity("Apple", "Grape", 0.66),
WordSimilarity("Scala", "Apple", -0.1),
WordSimilarity("Gine", "Spark", 0.1))
val dict = spark.createDataset(similarityData)
val countPositiveSimilarity = udf[Long, Seq[String], Seq[String]]((a, b) =>
dict.filter(
(($"first".isin(a: _*) && $"second".isin(b: _*)) || ($"first".isin(b: _*) && $"second".isin(a: _*))) && $"similarity" > 0.7
).count
)
val countDF = targets.withColumn("positive_count", countPositiveSimilarity($"wordListOne", $"wordListTwo"))
This is an example code and is similar to my original code.
Example code operates well. Which point should I check in original code and data?
Very interesting question. I have to do some search, and here is my though. Hope this will help you a little bit.
When you create Dataset via createDataset, spark will assign this dataset with LocalRelation logical query plan.
def createDataset[T : Encoder](data: Seq[T]): Dataset[T] = {
val enc = encoderFor[T]
val attributes = enc.schema.toAttributes
val encoded = data.map(d => enc.toRow(d).copy())
val plan = new LocalRelation(attributes, encoded)
Dataset[T](self, plan)
}
Follow this link:
LocalRelation is a leaf logical plan that allow functions like collect or take to be executed locally, i.e. without using Spark executors.
And, it's true as isLocal method point out
/**
* Returns true if the `collect` and `take` methods can be run locally
* (without any Spark executors).
*
* #group basic
* #since 1.6.0
*/
def isLocal: Boolean = logicalPlan.isInstanceOf[LocalRelation]
Obviously, You can check out your 2 datasets is local.
And, the show method actually call take internally.
private[sql] def showString(_numRows: Int, truncate: Int = 20): String = {
val numRows = _numRows.max(0)
val takeResult = toDF().take(numRows + 1)
val hasMoreData = takeResult.length > numRows
val data = takeResult.take(numRows)
So, with those envidences, I think the call countDF.show is executed, it will behave simliar as when you call count on dict dataset from driver, number of call times is number of records of targets. And, the dict dataset of course doesn't need to be local for the show on countDF work.
You can try to save countDF, it will give you exception same as first case
org.apache.spark.SparkException: Failed to execute user defined function($anonfun$1: (array<string>, array<string>) => bigint)
You can not use a Dataframe inside of an udf. You will need to join productInformation and dict, and do the udf logic after the join.

Why accesing DataFrame from UDF results in NullPointerException?

I have a problem executing a Spark application.
Source code:
// Read table From HDFS
val productInformation = spark.table("temp.temp_table1")
val dict = spark.table("temp.temp_table2")
// Custom UDF
val countPositiveSimilarity = udf[Long, Seq[String], Seq[String]]((a, b) =>
dict.filter(
(($"first".isin(a: _*) && $"second".isin(b: _*)) || ($"first".isin(b: _*) && $"second".isin(a: _*))) && $"similarity" > 0.7
).count
)
val result = productInformation.withColumn("positive_count", countPositiveSimilarity($"title", $"internal_category"))
// Error occurs!
result.show
Error message:
org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 54.0 failed 4 times, most recent failure: Lost task 0.3 in stage 54.0 (TID 5887, ip-10-211-220-33.ap-northeast-2.compute.internal, executor 150): org.apache.spark.SparkException: Failed to execute user defined function($anonfun$1: (array<string>, array<string>) => bigint)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.processNext(Unknown Source)
at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$8$$anon$1.hasNext(WholeStageCodegenExec.scala:377)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:231)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:225)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$25.apply(RDD.scala:826)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$25.apply(RDD.scala:826)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
at org.apache.spark.scheduler.Task.run(Task.scala:99)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:282)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
Caused by: java.lang.NullPointerException
at $anonfun$1.apply(<console>:45)
at $anonfun$1.apply(<console>:43)
... 16 more
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1435)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1423)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1422)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1422)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:802)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:802)
at scala.Option.foreach(Option.scala:257)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:802)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1650)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1605)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1594)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:628)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1918)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1931)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1944)
at org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:333)
at org.apache.spark.sql.execution.CollectLimitExec.executeCollect(limit.scala:38)
at org.apache.spark.sql.Dataset$$anonfun$org$apache$spark$sql$Dataset$$execute$1$1.apply(Dataset.scala:2371)
at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:57)
at org.apache.spark.sql.Dataset.withNewExecutionId(Dataset.scala:2765)
at org.apache.spark.sql.Dataset.org$apache$spark$sql$Dataset$$execute$1(Dataset.scala:2370)
at org.apache.spark.sql.Dataset.org$apache$spark$sql$Dataset$$collect(Dataset.scala:2377)
at org.apache.spark.sql.Dataset$$anonfun$head$1.apply(Dataset.scala:2113)
at org.apache.spark.sql.Dataset$$anonfun$head$1.apply(Dataset.scala:2112)
at org.apache.spark.sql.Dataset.withTypedCallback(Dataset.scala:2795)
at org.apache.spark.sql.Dataset.head(Dataset.scala:2112)
at org.apache.spark.sql.Dataset.take(Dataset.scala:2327)
at org.apache.spark.sql.Dataset.showString(Dataset.scala:248)
at org.apache.spark.sql.Dataset.show(Dataset.scala:636)
at org.apache.spark.sql.Dataset.show(Dataset.scala:595)
at org.apache.spark.sql.Dataset.show(Dataset.scala:604)
... 48 elided
Caused by: org.apache.spark.SparkException: Failed to execute user defined function($anonfun$1: (array<string>, array<string>) => bigint)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.processNext(Unknown Source)
at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$8$$anon$1.hasNext(WholeStageCodegenExec.scala:377)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:231)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:225)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$25.apply(RDD.scala:826)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$25.apply(RDD.scala:826)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
at org.apache.spark.scheduler.Task.run(Task.scala:99)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:282)
... 3 more
Caused by: java.lang.NullPointerException
at $anonfun$1.apply(<console>:45)
at $anonfun$1.apply(<console>:43)
... 16 more
I have checked whether productInformation and dict have null value in Columns. But there are no null values.
Can anyone help me?
I attached example code to let you know more details:
case class Target(wordListOne: Seq[String], WordListTwo: Seq[String])
val targetData = Seq(Target(Seq("Spark", "Wrong", "Something"), Seq("Java", "Grape", "Banana")),
Target(Seq("Java", "Scala"), Seq("Scala", "Banana")),
Target(Seq(""), Seq("Grape", "Banana")),
Target(Seq(""), Seq("")))
val targets = spark.createDataset(targetData)
case class WordSimilarity(first: String, second: String, similarity: Double)
val similarityData = Seq(WordSimilarity("Spark", "Java", 0.8),
WordSimilarity("Scala", "Spark", 0.9),
WordSimilarity("Java", "Scala", 0.9),
WordSimilarity("Apple", "Grape", 0.66),
WordSimilarity("Scala", "Apple", -0.1),
WordSimilarity("Gine", "Spark", 0.1))
val dict = spark.createDataset(similarityData)
val countPositiveSimilarity = udf[Long, Seq[String], Seq[String]]((a, b) =>
dict.filter(
(($"first".isin(a: _*) && $"second".isin(b: _*)) || ($"first".isin(b: _*) && $"second".isin(a: _*))) && $"similarity" > 0.7
).count
)
val countDF = targets.withColumn("positive_count", countPositiveSimilarity($"wordListOne", $"wordListTwo"))
This is an example code and is similar to my original code.
Example code operates well. Which point should I check in original code and data?
Very interesting question. I have to do some search, and here is my though. Hope this will help you a little bit.
When you create Dataset via createDataset, spark will assign this dataset with LocalRelation logical query plan.
def createDataset[T : Encoder](data: Seq[T]): Dataset[T] = {
val enc = encoderFor[T]
val attributes = enc.schema.toAttributes
val encoded = data.map(d => enc.toRow(d).copy())
val plan = new LocalRelation(attributes, encoded)
Dataset[T](self, plan)
}
Follow this link:
LocalRelation is a leaf logical plan that allow functions like collect or take to be executed locally, i.e. without using Spark executors.
And, it's true as isLocal method point out
/**
* Returns true if the `collect` and `take` methods can be run locally
* (without any Spark executors).
*
* #group basic
* #since 1.6.0
*/
def isLocal: Boolean = logicalPlan.isInstanceOf[LocalRelation]
Obviously, You can check out your 2 datasets is local.
And, the show method actually call take internally.
private[sql] def showString(_numRows: Int, truncate: Int = 20): String = {
val numRows = _numRows.max(0)
val takeResult = toDF().take(numRows + 1)
val hasMoreData = takeResult.length > numRows
val data = takeResult.take(numRows)
So, with those envidences, I think the call countDF.show is executed, it will behave simliar as when you call count on dict dataset from driver, number of call times is number of records of targets. And, the dict dataset of course doesn't need to be local for the show on countDF work.
You can try to save countDF, it will give you exception same as first case
org.apache.spark.SparkException: Failed to execute user defined function($anonfun$1: (array<string>, array<string>) => bigint)
You can not use a Dataframe inside of an udf. You will need to join productInformation and dict, and do the udf logic after the join.

scala.MatchError on a tuple

After processing some input data, I got a RDD[(String, String, Long)], say input, in hand.
input: org.apache.spark.rdd.RDD[(String, String, Long)] = MapPartitionsRDD[9] at flatMap at <console>:54
The string fields here represent vertices of graph and long field is the weight of the edge.
To create a graph out of this, first I am inserting vertices into a map with a unique id if vertex is not known already. If it was already encountered, I use the vertex id that was assigned previously. Essentially, each vertex is assigned a unique id of type Long and then I want to create Edges.
Here is what I am doing:
var vertexMap = collection.mutable.Map[String, Long]()
var vid : Long = 0 // global vertex id counter
var srcVid : Long = 0 // source vertex id
var dstVid : Long = 0 // destination vertex id
val graphEdges = input.map {
case Row(src: String, dst: String, weight: Long) => (
if (vertexMap.contains(src)) {
srcVid = vertexMap(src)
if (vertexMap.contains(dst)) {
dstVid = vertexMap(dst)
} else {
vid += 1 // pick a new vertex id
vertexMap += (dst -> vid)
dstVid = vid
}
Edge(srcVid, dstVid, weight)
} else {
vid += 1
vertexMap(src) = vid
srcVid = vid
if (vertexMap.contains(dst)) {
dstVid = vertexMap(dst)
} else {
vid += 1
vertexMap(dst) = vid
dstVid = vid
}
Edge(srcVid, dstVid, weight)
}
}
val graph = Graph.fromEdges(graphEdges, 0)
println("num edges = " + graph.numEdges);
println("num vertices = " + graph.numVertices);
What I see is
graphEdges is of type RDD[org.apache.spark.graphx.Edge[Long]] and graph is of type Graph[Int,Long]
graphEdges: org.apache.spark.rdd.RDD[org.apache.spark.graphx.Edge[Long]] = MapPartitionsRDD[10] at map at <console>:64
graph: org.apache.spark.graphx.Graph[Int,Long] = org.apache.spark.graphx.impl.GraphImpl#1b48170a
but I get the following error, while printing the graph's edge and vertex count.
org.apache.spark.SparkException: Job aborted due to stage failure: Task 1 in stage 8.0 failed 1 times, most recent failure: Lost task 1.0 in stage 8.0 (TID 9, localhost, executor driver): ***scala.MatchError: (vertexA, vertexN, 2000
)*** (of class scala.Tuple3)
at $anonfun$1.apply(<console>:64)
at $anonfun$1.apply(<console>:64)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
at scala.collection.Iterator$class.foreach(Iterator.scala:893)
at scala.collection.AbstractIterator.foreach(Iterator.scala:1336)
at org.apache.spark.graphx.EdgeRDD$$anonfun$1.apply(EdgeRDD.scala:107)
at org.apache.spark.graphx.EdgeRDD$$anonfun$1.apply(EdgeRDD.scala:105)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsWithIndex$1$$anonfun$apply$26.apply(RDD.scala:844)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsWithIndex$1$$anonfun$apply$26.apply(RDD.scala:844)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
at org.apache.spark.rdd.RDD$$anonfun$8.apply(RDD.scala:336)
at org.apache.spark.rdd.RDD$$anonfun$8.apply(RDD.scala:334)
at org.apache.spark.storage.BlockManager$$anonfun$doPutIterator$1.apply(BlockManager.scala:1038)
at org.apache.spark.storage.BlockManager$$anonfun$doPutIterator$1.apply(BlockManager.scala:1029)
at org.apache.spark.storage.BlockManager.doPut(BlockManager.scala:969)
at org.apache.spark.storage.BlockManager.doPutIterator(BlockManager.scala:1029)
at org.apache.spark.storage.BlockManager.getOrElseUpdate(BlockManager.scala:760)
at org.apache.spark.rdd.RDD.getOrCompute(RDD.scala:334)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:285)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
at org.apache.spark.scheduler.Task.run(Task.scala:108)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:335)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
I don't understand where is the mismatch here.
Thanks #Joe K for the helpful tip. I started using zipIndex and code looks compact now, however graph instantiation still fails. Here is the updated code:
val vertices = input.map(r => r._1).union(input.map(r => r._2)).distinct.zipWithIndex
val graphEdges = input.map {
case (src, dst, weight) =>
Edge(vertices.lookup(src)(0), vertices.lookup(dst)(0), weight)
}
val graph = Graph.fromEdges(graphEdges, 0)
println("num edges = " + graph.numEdges);
So, from the original 3-tuple, I am forming a union of 1st and 2nd tuples (which are vertices), then assigning unique Ids to each after uniquifying them. I am then using their ids, while creating edges. However, it fails with following exception:
org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 15.0 failed 1 times, most recent failure: Lost task 0.0 in stage 15.0 (TID 23, localhost, executor driver): org.apache.spark.SparkException: This RDD lacks
a SparkContext. It could happen in the following cases:
(1) RDD transformations and actions are NOT invoked by the driver, but inside of other transformations; for example, rdd1.map(x => rdd2.values.count() * x) is invalid because the values transformation and count action cannot be performed
inside of the rdd1.map transformation. For more information, see SPARK-5063.
(2) When a Spark Streaming job recovers from checkpoint, this exception will be hit if a reference to an RDD not defined by the streaming job is used in DStream operations. For more information, See SPARK-13758.
at org.apache.spark.rdd.RDD.org$apache$spark$rdd$RDD$$sc(RDD.scala:89)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:362)
at org.apache.spark.rdd.PairRDDFunctions.lookup(PairRDDFunctions.scala:937)
at $anonfun$1.apply(<console>:55)
at $anonfun$1.apply(<console>:53)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
at scala.collection.Iterator$class.foreach(Iterator.scala:893)
at scala.collection.AbstractIterator.foreach(Iterator.scala:1336)
at org.apache.spark.graphx.EdgeRDD$$anonfun$1.apply(EdgeRDD.scala:107)
Any thoughts ?
This specific error is coming from trying to match a tuple as a Row, which it is not.
Change:
case Row(src: String, dst: String, weight: Long) => {
to just:
case (src, dst, weight) => {
Also, your larger plan for generating vertex ids will not work. All of the logic inside the map will happen in parallel in different executors, which will have different copies of the mutable map.
You should flatMap your edges to get a list of all vertexes, then call .distinct.zipWithIndex to assign each vertex a single unique long value. You would then need to re-join with the original edges.

Spark Hadoop Failed to get broadcast

Running a spark-submit job and receiving a "Failed to get broadcast_58_piece0..." error. I'm really not sure what I'm doing wrong. Am I overusing UDFs? Too complicated a function?
As a summary of my objective, I am parsing text from pdfs, which are stored as base64 encoded strings in JSON objects. I'm using Apache Tika to get the text, and trying to make copious use of data frames to make things easier.
I had written a piece of code that ran the text extraction through tika as a function outside of "main" on the data as a RDD, and that worked flawlessly. When I try to bring the extraction into main as a UDF on data frames, though, it borks in various different ways. Before I got here I was actually trying to write the final data frame as:
valid.toJSON.saveAsTextFile(hdfs_dir)
This was giving me all sorts of "File/Path already exists" headaches.
Current code:
object Driver {
def main(args: Array[String]):Unit = {
val hdfs_dir = args(0)
val spark_conf = new SparkConf().setAppName("Spark Tika HDFS")
val sc = new SparkContext(spark_conf)
val sqlContext = new org.apache.spark.sql.SQLContext(sc)
import sqlContext.implicits._
// load json data into dataframe
val df = sqlContext.read.json("hdfs://hadoophost.com:8888/user/spark/data/in/*")
val extractInfo: (Array[Byte] => String) = (fp: Array[Byte]) => {
val parser:Parser = new AutoDetectParser()
val handler:BodyContentHandler = new BodyContentHandler(Integer.MAX_VALUE)
val config:TesseractOCRConfig = new TesseractOCRConfig()
val pdfConfig:PDFParserConfig = new PDFParserConfig()
val inputstream:InputStream = new ByteArrayInputStream(fp)
val metadata:Metadata = new Metadata()
val parseContext:ParseContext = new ParseContext()
parseContext.set(classOf[TesseractOCRConfig], config)
parseContext.set(classOf[PDFParserConfig], pdfConfig)
parseContext.set(classOf[Parser], parser)
parser.parse(inputstream, handler, metadata, parseContext)
handler.toString
}
val extract_udf = udf(extractInfo)
val df2 = df.withColumn("unbased_media", unbase64($"media_file")).drop("media_file")
val dfRenamed = df2.withColumn("media_corpus", extract_udf(col("unbased_media"))).drop("unbased_media")
val depuncter: (String => String) = (corpus: String) => {
val r = corpus.replaceAll("""[\p{Punct}]""", "")
val s = r.replaceAll("""[0-9]""", "")
s
}
val depuncter_udf = udf(depuncter)
val withoutPunct = dfRenamed.withColumn("sentence", depuncter_udf(col("media_corpus")))
val model = sc.objectFile[org.apache.spark.ml.PipelineModel]("hdfs://hadoophost.com:8888/user/spark/hawkeye-nb-ml-v2.0").first()
val with_predictions = model.transform(withoutPunct)
val fullNameChecker: ((String, String, String, String, String) => String) = (fname: String, mname: String, lname: String, sfx: String, text: String) =>{
val newtext = text.replaceAll(" ", "").replaceAll("""[0-9]""", "").replaceAll("""[\p{Punct}]""", "").toLowerCase
val new_fname = fname.replaceAll(" ", "").replaceAll("""[0-9]""", "").replaceAll("""[\p{Punct}]""", "").toLowerCase
val new_mname = mname.replaceAll(" ", "").replaceAll("""[0-9]""", "").replaceAll("""[\p{Punct}]""", "").toLowerCase
val new_lname = lname.replaceAll(" ", "").replaceAll("""[0-9]""", "").replaceAll("""[\p{Punct}]""", "").toLowerCase
val new_sfx = sfx.replaceAll(" ", "").replaceAll("""[0-9]""", "").replaceAll("""[\p{Punct}]""", "").toLowerCase
val name_full = new_fname.concat(new_mname).concat(new_lname).concat(new_sfx)
val c = name_full.r.findAllIn(newtext).length
c match {
case 0 => "N"
case _ => "Y"
}
}
val fullNameChecker_udf = udf(fullNameChecker)
val stringChecker: ((String, String) => String) = (term: String, text: String) => {
val termLower = term.replaceAll("""[\p{Punct}]""", "").toLowerCase
val textLower = text.replaceAll("""[\p{Punct}]""", "").toLowerCase
val c = termLower.r.findAllIn(textLower).length
c match {
case 0 => "N"
case _ => "Y"
}
}
val stringChecker_udf = udf(stringChecker)
val stringChecker2: ((String, String) => String) = (term: String, text: String) => {
val termLower = term takeRight 4
val textLower = text
val c = termLower.r.findAllIn(textLower).length
c match {
case 0 => "N"
case _ => "Y"
}
}
val stringChecker2_udf = udf(stringChecker)
val valids = with_predictions.withColumn("fname_valid", stringChecker_udf(col("first_name"), col("media_corpus")))
.withColumn("lname_valid", stringChecker_udf(col("last_name"), col("media_corpus")))
.withColumn("fname2_valid", stringChecker_udf(col("first_name_2"), col("media_corpus")))
.withColumn("lname2_valid", stringChecker_udf(col("last_name_2"), col("media_corpus")))
.withColumn("camt_valid", stringChecker_udf(col("chargeoff_amount"), col("media_corpus")))
.withColumn("ocan_valid", stringChecker2_udf(col("original_creditor_account_nbr"), col("media_corpus")))
.withColumn("dpan_valid", stringChecker2_udf(col("debt_provider_account_nbr"), col("media_corpus")))
.withColumn("full_name_valid", fullNameChecker_udf(col("first_name"), col("middle_name"), col("last_name"), col("suffix"), col("media_corpus")))
.withColumn("full_name_2_valid", fullNameChecker_udf(col("first_name_2"), col("middle_name_2"), col("last_name_2"), col("suffix_2"), col("media_corpus")))
valids.write.mode(SaveMode.Overwrite).format("json").save(hdfs_dir)
}
}
Full stack trace starting with error:
16/06/14 15:02:01 WARN TaskSetManager: Lost task 0.0 in stage 4.0 (TID 53, hdpd11n05.squaretwofinancial.com): org.apache.spark.SparkException: Task failed while writing rows.
at org.apache.spark.sql.execution.datasources.DefaultWriterContainer.writeRows(WriterContainer.scala:272)
at org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelation$$anonfun$run$1$$anonfun$apply$mcV$sp$3.apply(InsertIntoHadoopFsRelation.scala:150)
at org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelation$$anonfun$run$1$$anonfun$apply$mcV$sp$3.apply(InsertIntoHadoopFsRelation.scala:150)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66)
at org.apache.spark.scheduler.Task.run(Task.scala:89)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:213)
at java.util.concurrent.ThreadPoolExecutor.runWorker(Unknown Source)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(Unknown Source)
at java.lang.Thread.run(Unknown Source)
Caused by: java.io.IOException: org.apache.spark.SparkException: Failed to get broadcast_58_piece0 of broadcast_58
at org.apache.spark.util.Utils$.tryOrIOException(Utils.scala:1222)
at org.apache.spark.broadcast.TorrentBroadcast.readBroadcastBlock(TorrentBroadcast.scala:165)
at org.apache.spark.broadcast.TorrentBroadcast._value$lzycompute(TorrentBroadcast.scala:64)
at org.apache.spark.broadcast.TorrentBroadcast._value(TorrentBroadcast.scala:64)
at org.apache.spark.broadcast.TorrentBroadcast.getValue(TorrentBroadcast.scala:88)
at org.apache.spark.broadcast.Broadcast.value(Broadcast.scala:70)
at org.apache.spark.ml.feature.CountVectorizerModel$$anonfun$9$$anonfun$apply$7.apply(CountVectorizer.scala:222)
at org.apache.spark.ml.feature.CountVectorizerModel$$anonfun$9$$anonfun$apply$7.apply(CountVectorizer.scala:221)
at scala.collection.IndexedSeqOptimized$class.foreach(IndexedSeqOptimized.scala:33)
at scala.collection.mutable.WrappedArray.foreach(WrappedArray.scala:34)
at org.apache.spark.ml.feature.CountVectorizerModel$$anonfun$9.apply(CountVectorizer.scala:221)
at org.apache.spark.ml.feature.CountVectorizerModel$$anonfun$9.apply(CountVectorizer.scala:218)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$SpecificUnsafeProjection.evalExpr43$(Unknown Source)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$SpecificUnsafeProjection.apply(Unknown Source)
at org.apache.spark.sql.execution.Project$$anonfun$1$$anonfun$apply$1.apply(basicOperators.scala:51)
at org.apache.spark.sql.execution.Project$$anonfun$1$$anonfun$apply$1.apply(basicOperators.scala:49)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:328)
at org.apache.spark.sql.execution.datasources.DefaultWriterContainer.writeRows(WriterContainer.scala:263)
... 8 more
Caused by: org.apache.spark.SparkException: Failed to get broadcast_58_piece0 of broadcast_58
at org.apache.spark.broadcast.TorrentBroadcast$$anonfun$org$apache$spark$broadcast$TorrentBroadcast$$readBlocks$1$$anonfun$2.apply(TorrentBroadcast.scala:138)
at org.apache.spark.broadcast.TorrentBroadcast$$anonfun$org$apache$spark$broadcast$TorrentBroadcast$$readBlocks$1$$anonfun$2.apply(TorrentBroadcast.scala:138)
at scala.Option.getOrElse(Option.scala:120)
at org.apache.spark.broadcast.TorrentBroadcast$$anonfun$org$apache$spark$broadcast$TorrentBroadcast$$readBlocks$1.apply$mcVI$sp(TorrentBroadcast.scala:137)
at org.apache.spark.broadcast.TorrentBroadcast$$anonfun$org$apache$spark$broadcast$TorrentBroadcast$$readBlocks$1.apply(TorrentBroadcast.scala:120)
at org.apache.spark.broadcast.TorrentBroadcast$$anonfun$org$apache$spark$broadcast$TorrentBroadcast$$readBlocks$1.apply(TorrentBroadcast.scala:120)
at scala.collection.immutable.List.foreach(List.scala:318)
at org.apache.spark.broadcast.TorrentBroadcast.org$apache$spark$broadcast$TorrentBroadcast$$readBlocks(TorrentBroadcast.scala:120)
at org.apache.spark.broadcast.TorrentBroadcast$$anonfun$readBroadcastBlock$1.apply(TorrentBroadcast.scala:175)
at org.apache.spark.util.Utils$.tryOrIOException(Utils.scala:1219)
... 25 more
I encountered a similar error.
It turns out to be caused by the broadcast usage in CounterVectorModel. Following is the detailed cause in my case:
When model.transform() is called , the vocabulary is broadcasted and saved as an attribute broadcastDic in model implicitly. Therefore, if the CounterVectorModel is saved after calling model.transform(), the private var attribute broadcastDic is also saved. But unfortunately, in Spark, broadcasted object is context-sensitive, which means it is embedded in SparkContext. If that CounterVectorModel is loaded in a different SparkContext, it will fail to find the previous saved broadcastDic.
So either solution is to prevent calling model.transform() before saving the model, or clone the model by method model.copy().
For anyone coming across this, it turns out the model I was loading was malformed. I found out by using spark-shell in yarn-client mode and stepping through the code. When I tried to load the model it was fine, but running it against the datagram (model.transform) through errors about not finding a metadata directory.
I went back and found a good model, ran against that and it worked fine. This code is actually sound.