pyspark: parse text file with header and blank lines - pyspark

I am a newbie in pyspark.
I have a text file like below and I would like to parse it with pyspark and get only the abreviation of flowers as a list [ro,ni,da]. how can I do that ? please advise
---------
Plantes Abbreviations
Flowers:
ro rose
ni Nilofar
da Dahlia
--------

You load the file using textFile, then filter out the lines you don't want like below. It is worth noting that you shouldn't assume any particular ordering to your text file because if it is large and split across multiple files or HDFS blocks you won't necessarily know where you are starting in it.
lines = spark.sparkContext.textFile("file:///some/path/to/plants.txt")
# Remove empty lines and header lines
abbrevs = lines.filter(lambda row: len(row) > 0) \
.filter(lambda row: not row.startswith("Plantes")) \
.filter(lambda row: not row.startswith("Flowers:")) \
.map(lambda row: row.split())
only_abbrevs = abbrevs.map(lamdba row: row[0])
only_abbrevs.collect()
To transform any of the lines loaded, you can use map and provide a python lambda or function to change the data however you want.

Related

Convert csv file to map

I have a csv file containing a list of abbreviations and their full values such that the file looks like the below
original,mappedValue
bbc,britishBroadcastingCorporation
ch4,channel4
I want to convert this csv file into a Map such that it is of the form
val x:Map[String,String] = Map("bbc"->"britishBroadcastingCorporation", "ch4"->"channel4")
I have tried using the below:
Source.fromFile("pathToFile.csv").getLines().drop(1).map(_.split(","))
but this leaves me with an Iterator[Array[String]]
You are close , split provides an array. You have to convert it into a tuple and then to a map
Source.fromFile("/home/agr/file.csv").getLines().drop(1).map(csv=> (csv.split(",")(0),csv.split(",")(1))).toMap
res4: scala.collection.immutable.Map[String,String] = Map(bbc -> britishBroadcastingCorporation, ch4 -> channel4)
In real life , you will check for existance of bad rows and filtering out the array splits whose length is less than 2 or may be put that into another bin as bad data etc.

How to strip extra spaces when writing from dataframe to csv

Read in multiple sheets (6) from an xlsx file and created individual dataframes. Want to write each one out to a pipe delimited csv.
ind_dim.to_csv (r'/mypath/ind_dim_out.csv', index = None, header=True, sep='|')
Currently outputs like this:
1|value1 |value2 |word1 word2 word3 etc.
Want to strip trailing blanks
Suggestion
Include the method .apply(lambda x: x.str.rstrip()) to your output string (prior to the .to_csv() call) to strip the right trailing blank from each field across the DataFrame. It would look like:
Change:
ind_dim.to_csv(r'/mypath/ind_dim_out.csv', index = None, header=True, sep='|')
To:
ind_dim.apply(lambda x: x.str.rstrip()).to_csv(r'/mypath/ind_dim_out.csv', index = None, header=True, sep='|')
It can be easily inserted to the output code string using '.' referencing. To handle multiple data types, we can enforce the 'object' dtype on import by including the argument dtype='str':
ind_dim = pd.read_excel('testing_xlsx_nums.xlsx', header=0, index_col=0, sheet_name=None, dtype='str')
Or on the DataFrame itself by:
df = pd.DataFrame(df, dtype='str')
Proof
I did a mock-up where the .xlsx document has 5 sheets, with each sheet having three columns: The first column with all numbers except an empty cell in row 2; the second column with both a leading blank and a trailing blank on strings, an empty cell in row 3, and a number in row 4; and the third column * with all strings having a leading blank, and an empty value in row 4*. Integer indexes and integer columns have been included. The text in each sheet is:
0 1 2
0 11111 valueB1 valueC1
1 valueB2 valueC2
2 33333 valueC3
3 44444 44444
4 55555 valueB5 valueC5
This code reads in our .xlsx testing_xlsx_dtype.xlsx to the DataFrame dictionary ind_dim.
Next, it loops through each sheet using a for loop to place the sheet name variable as a key to reference the individual sheet DataFrame. It applies the .str.rstrip() method to the entire sheet/DataFrame by passing the lambda x: x.str.rstrip() lambda function to the .apply() method called on the sheet/DataFrame.
Finally, it outputs the sheet/DataFrame as a .csv with the pipe delimiter using .to_csv() as seen in the OP post.
# reads xlsx in
ind_dim = pd.read_excel('testing_xlsx_nums.xlsx', header=0, index_col=0, sheet_name=None, dtype='str')
# loops through sheets, applies rstrip(), output as csv '|' delimit
for sheet in ind_dim:
ind_dim[sheet].apply(lambda x: x.str.rstrip()).to_csv(sheet + '_ind_dim_out.csv', sep='|')
Returns:
|0|1|2
0|11111| valueB1| valueC1
1|| valueB2| valueC2
2|33333|| valueC3
3|44444|44444|
4|55555| valueB5| valueC5
(Note our column 2 strings no longer have the trailing space).
We can also reference each sheet using a loop that cycles through the dictionary items; the syntax would look like for k, v in dict.items() where k and v are the key and value:
# reads xlsx in
ind_dim = pd.read_excel('testing_xlsx_nums.xlsx', header=0, index_col=0, sheet_name=None, dtype='str')
# loops through sheets, applies rstrip(), output as csv '|' delimit
for k, v in ind_dim.items():
v.apply(lambda x: x.str.rstrip()).to_csv(k + '_ind_dim_out.csv', sep='|')
Notes:
We'll still need to apply the correct arguments for selecting/ignoring indexes and columns with the header= and names= parameters as needed. For these examples I just passed =None for simplicity.
The other methods that strip leading and leading & trailing spaces are: .str.lstrip() and .str.strip() respectively. They can also be applied to an entire DataFrame using the .apply(lambda x: x.str.strip()) lambda function passed to the .apply() method called on the DataFrame.
Only 1 Column: If we only wanted to strip from one column, we can call the .str methods directly on the column itself. For example, to strip leading & trailing spaces from a column named column2 in DataFrame df we would write: df.column2.str.strip().
Data types not string: When importing our data, pandas will assume data types for columns with a similar data type. We can override this by passing dtype='str' to the pd.read_excel() call when importing.
pandas 1.0.1 documentation (04/30/2020) on pandas.read_excel:
"dtypeType name or dict of column -> type, default None
Data type for data or columns. E.g. {‘a’: np.float64, ‘b’: np.int32} Use object to preserve data as stored in Excel and not interpret dtype. If converters are specified, they will be applied INSTEAD of dtype conversion."
We can pass the argument dtype='str' when importing with pd.read_excel.() (as seen above). If we want to enforce a single data type on a DataFrame we are working with, we can set it equal to itself and pass it to pd.DataFrame() with the argument dtype='str like: df = pd.DataFrame(df, dtype='str')
Hope it helps!
The following trims left and right spaces fairly easily:
if (!require(dplyr)) {
install.packages("dplyr")
}
library(dplyr)
if (!require(stringr)) {
install.packages("stringr")
}
library(stringr)
setwd("~/wherever/you/need/to/get/data")
outputWithSpaces <- read.csv("CSVSpace.csv", header = FALSE)
print(head(outputWithSpaces), quote=TRUE)
#str_trim(string, side = c("both", "left", "right"))
outputWithoutSpaces <- outputWithSpaces %>% mutate_all(str_trim)
print(head(outputWithoutSpaces), quote=TRUE)
Starting Data:
V1 V2 V3 V4
1 "Something is interesting. " "This is also Interesting. " "Not " "Intereting "
2 " Something with leading space" " Leading" " Spaces with many words." " More."
3 " Leading and training Space. " " More " " Leading and trailing. " " Spaces. "
Resulting:
V1 V2 V3 V4
1 "Something is interesting." "This is also Interesting." "Not" "Intereting"
2 "Something with leading space" "Leading" "Spaces with many words." "More."
3 "Leading and training Space." "More" "Leading and trailing." "Spaces."

Spark - read text file, string off first X and last Y rows using monotonically_increasing_id

I have to read in files from vendors, that can get potentially pretty big (multiple GB). These files may have multiple header and footer rows I want to strip off.
Reading the file in is easy:
val rawData = spark.read
.format("csv")
.option("delimiter","|")
.option("mode","PERMISSIVE")
.schema(schema)
.load("/path/to/file.csv")
I can add a simple row number using monotonically_increasing_id:
val withRN = rawData.withColumn("aIndex",monotonically_increasing_id())
That seems to work fine.
I can easily use that to strip off header rows:
val noHeader = withRN.filter($"aIndex".geq(2))
but how can I strip off footer rows?
I was thinking about getting the max of the index column, and using that as a filter, but I can't make that work.
val MaxRN = withRN.agg(max($"aIndex")).first.toString
val noFooter = noHeader.filter($"aIndex".leq(MaxRN))
That returns no rows, because MaxRN is a string.
If I try to convert it to a long, that fails:
noHeader.filter($"aIndex".leq(MaxRN.toLong))
java.lang.NumberFormatException: For input string: "[100000]"
How can I use that max value in a filter?
Is trying to use monotonically_increasing_id like this even a viable approach? Is it really deterministic?
This happens because first will return a Row. To access the first element of the row you must do:
val MaxRN = withRN.agg(max($"aIndex")).first.getLong(0)
By converting the row to string you will get [100000] and of course this is not a valid Long that's why the casting is failing.

Escape hyphen when reading multiple dataframes at once in pyspark

I can't seem to find any documentation on this in pyspark's docs.
I am trying to read multiple parquets at once, like this:
df = sqlContext.read.option("basePath", "/some/path")\
.load("/some/path/date=[2018-01-01, 2018-01-02]")
And receive the following exception
java.util.regex.PatternSyntaxException: Illegal character range near index 11
E date=[2018-01-01,2018-01-02]
I tried replacing the hyphen with \-, but then I just receive a file not found exception.
I would appreciate help on that
Escaping the - is not your issue. You can not specify multiple dates in a list like that. If you'd like to read multiple files, you have a few options.
Option 1: Use * as a wildcard:
df = sqlContext.read.option("basePath", "/some/path").load("/some/path/date=2018-01-0*")
But this will also read any files named /some/path/data=2018-01-03 through /some/path/data=2018-01-09.
Option 2: Read each file individually and union the results
dates = ["2018-01-01", "2018-01-02"]
df = reduce(
lambda a, b: a.union(b),
[
sqlContext.read.option("basePath", "/some/path").load(
"/some/path/date={d}".format(d=d)
) for d in dates
]
)

How to Remove first few lines/header from multiple files using scala in spark

I was able to remove the first few lines of a single file using the code below:
scala> val file = sc.textFile("file:///root/path/file.csv")
Removing first 5 lines:
scala> val Data = file.mapPartitionsWithIndex{ (idx, iter) => if (idx == 0) iter.drop(5) else iter }
The problem is: Suppose that I have multiple files with the same columns, and I want to load all of them into rdd, removing the first few lines of each file.
Is this actually possible?
I'd appreciate any help. Thanks in advance!
Lets assume there are 2 files.
ravis-MacBook-Pro:files raviramadoss$ cat file.csv
first_file_first_record
first_file_second_record
first_file_third_record
first_file_fourth_record
first_file_fifth_record
first_file_sixth_record
ravis-MacBook-Pro:files raviramadoss$ cat file_2.csv
second_file_first_record
second_file_second_record
second_file_third_record
second_file_fourth_record
second_file_fifth_record
second_file_sixth_record
second_file_seventh_record
second_file_eight_record
Scala Code
sc.wholeTextFiles("/Users/raviramadoss/files").flatMap( _._2.lines.drop(5) ).collect()
Output:
res41: Array[String] = Array(first_file_sixth_record, second_file_sixth_record, second_file_seventh_record, second_file_eight_record)
In Spark/Hadoop if you give the input path as the directory containing all the files then the code which you have written will work on all the individual files separately.
So to achieve your objective, just give the input path as the directory containing all the files. So the first few lines will be removed from all the files.