I'm using canny edge detection to detect the edges of a rope and eliminate the background, then using morphological filters I'm filling these edges then thinning them to be in pixel size. The plot indicates the xy coordinates of the rope. What I need to do is to get the intersection of the scattered data (blue *) with the red circle (get the coordinates of Points (1,2,3,4).
Then I need to get the whole points coordinates from the point of intersection (point1,2,3,4) to the center,grouped as A,B,C,D.
The center of the circle, the origin of the axes, and the radius are all known.
I've tried some Matlab functions to get the four intersections points like
InterX,intersections
and also I tried to manually find the intersections
idx=find(y1-y2<eps);
but no method gives me the 4 intersection points.
Thank you in Advance
You'll need a thick circle. I presume (from your previous question) that the rope points are at contiguous integer coordinates. Using a thick circle (donut) with a width of 1 ensures you'll find at least one point in each rope end. Connected component analysis will then tell you which of these points belong to the same rope end.
Related
I have image of robot with yellow markers as shown
The yellow points shown are the markers. There are two cameras used to view placed at an offset of 90 degrees. The robot bends in between the cameras. The crude schematic of the setup can be referred.
https://i.stack.imgur.com/aVyDq.png
Using the two cameras I am able to get its 3d co-ordinates of the yellow markers. But, I need to find the 3d-co-oridnates of the central point of the robot as shown.
I need to find the 3d position of the red marker points which is inside the cylindrical robot. Firstly, is it even feasible? If yes, what is the method I can use to achieve this?
As a bonus, is there any literature where they find the 3d location of such internal points which I can refer to (I searched, but could not find anything similar to my ask).
I am welcome to a theoretical solution as well(as long as it assures to find the central point within a reasonable error), which I can later translate to code.
If you know the actual dimensions, or at least, shape (e.g. perfect circle) of the white bands, then yes, it is feasible and possible.
You need to do the following steps, which are quite non trivial to do, and I won't do them here:
Optional but extremely suggested: calibrate your camera, and
undistort it.
find the equation of the projection of a 3D circle into a 2D camera, for any given rotation. You can simplify this by assuming the white line will be completely horizontal. You want some function that takes the parameters that make a circle and a rotation.
Find all white bands in the image, segment them, and make them horizontal (rotate them)
Fit points in the corrected white circle to the equation in (1). That should give you the parameters of the circle in 3d (radious, angle), if you wrote the equation right.
Now that you have an analytic equation of the actual circle (equation from 1 with parameters from 3), you can map any point from this circle (e.g. its center) to the image location. Remember to uncorrect for the rotations in step 2.
This requires understanding of curve fitting, some geometric analytical maths, and decent code skills. Not trivial, but this will provide a solution that is highly accurate.
For an inaccurate solution:
Find end points of white circles
Make line connecting endpoints
Chose center as mid point of this line.
This will be inaccurate because: choosing end points will have more error than fitting an equation with all points, ignores cone shape of view of the camera, ignores geometry.
But it may be good enough for what you want.
I have been able to extract the midpoint by fitting an ellipse to the arc visible to the camera. The centroid of the ellipse is the required midpoint.
There will be wrong ellipses as well, which can be ignored. The steps to extract the ellipse were:
Extract the markers
Binarise and skeletonise
Fit ellipse to the arc (found a matlab function for this)
Get the centroid of the ellipse
hsv_img=rgb2hsv(im);
bin=new_hsv_img(:,:,3)>marker_th; %was chosen 0.35
%skeletonise
skel=bwskel(bin);
%use regionprops to get the pixelID list
stats=regionprops(skel,'all');
for i=1:numel(stats)
el = fit_ellipse(stats(i).PixelList(:,1),stats(i).PixelList(:,2));
ellipse_draw(el.a, el.b, -el.phi, el.X0_in, el.Y0_in, 'g');
The link for fit_ellipse function
Link for ellipse_draw function
Shown Figure (1) is a typical Delaunay triangulation (blue) and it has a boundary line (black rectangle).
Each vertex in the Delaunay triangulation has a height value. So I can calculate the height inside convex hull. I am figuring out a method to calculate the height up to the boundary line (some sort of extrapolation).
There are two things associated with this task
Triangulate up to the boundary point
Figuring out the height at newly created triangle vertices
Anybody come across this issue?
Figure 1:
I'd project the convex hull points of the triangulation to the visible box segments and then insert the 4 box corners and the projected points into the triangulation.
There is no unique correct way to assign heights to the new points. One easy and stable method would be to assign to each new point the height of the closest visible convex hull vertex. Be careful with extrapolation: Triangles of the convex hull tend to have unstable slopes, see the large triangles in front of the below terrain image. Their projection to the xy plane has almost 0 area but due to the height difference they are large and almost 90 degrees to the xy plane.
I've had some luck with the following approach:
Find the segment on the convex hull that is closet to the extrapolation point
If I can drop a perpendicular onto the segment, interpolate between the two vertices of the segment.
If I can not construct the perpendicular, just use the closest vertex
This approach results in a continuous surface, but does not provide 1st derivative continuity.
You can find some code that might be helpful at TriangularFacetInterpolator.java. Look for the interpolateWithExteriorSupport method.
Building on the discussions here and here. I'm trying to compute the shortest distance between a 3D line and a 3D triangle.
I'm using barycentric coordinates to determine whether or not the point is inside the triangle. So given a triangle defined by vertices UVW and a line defined by point AB, I first compute the intersection of line AB with the plane defined by UVW. Let's call this intersection P and assume I've already done the checks to verify whether or not the point actually intersects the plane at all.
I then compute barycentric coordinates (S,T) such that S is defined along the edge UV and T is defined along the edge UW. Naturally, if 0≤S and 0≤T and S+T≤1 then P is on the triangle (or its edge) and my distance to the triangle is obviously zero.
If that's not true then P is outside the triangle and I need to compute the distance. The guidance of from the first link says to project point P onto all three edges to get three candidate points. Adding those points to the three triangle's vertices, you then have six points to test against.
Isn't it easier than that, though? If T<0, then don't you already know that UV is the closest edge and you only have to test against the projection of P onto that line? Similarly, if S<0 then UW would be the closest edge. If T>0 and S>0 then VW is the closest edge.
Thus based on the signs of S and T you already know the closest edge and only have to compute the distance from P to its projection onto that edge. If the projection isn't inside the triangle, then the closest point is either vertex. Thus your computations are about 1/3 of the proposed methods.
Am I missing something here, or is this a valid optimization? I'm fairly new to barycentric coordinates and their attributes.
It turns out that the problem of closest distance from a point and from a line are very similar and can both be reduced to a pure 2D problem.
Distance from a point
By Pythagoras, the squared distance from a point to a point of the triangle is the sum of the squared distance to the plane of support of the triangle and the squared distance of the projection of the point to that plane.
The latter distance is precisely the distance from the normal line to the triangle.
Distance from a line
Looking in the direction of the line, you see the projected triangle and the line is reduced to a single point. The requested 3D distance is equal to the 2D distance seen on the projection.
To obtain the desired coordinates, you use an auxiliary coordinate frame such that Z is in the direction of the line (and XY is a perpendicular plane); for convenience, choose the origin of the new frame to be on the line. Then by just ignoring Z, you get a planar problem in XY. The change of coordinates is an affine tranformation.
Point vs. triangle
Consider the three triangles formed by the origin (projection of the point/line) and a pair of triangle vertices (taken in cyclic order). The signed area of these triangles is a mere 2x2 determinant.
If the three areas have the same sign, the point is inside. Otherwise, the signs tell you where you are among the six surrounding regions, either past an edge or past a vertex.
On the upper figure, the point is inside (three positive areas). On the other figure, it is outside of the top-right edge (one negative area). Also note that dividing an area by the length of the corresponding side, you get the distance to the side. (Factor 2 omitted.)
The total work is
compute the affine frame;
convert the coordinates of the 3 or 4 points;
compute the three signed areas;
if inside, you are done;
otherwise, if in an edge region, compute a distance to a line and two distances to points;
otherwise you are in a vertex region, compute two distances to lines and one distance to vertex.
I want to plot 3D cube of size 2x2x5 (x,y,z) around an interest point to get the nearest points to it and inside the cube. The interest point may be at the center of cube.
How can I get the nearest points to the interest point?
There are several techniques for drawing cubes here. You will need to choose one that lets you specify size and origin. The sizes will be 2,2,5, and the origin will be the coordinates of the interest point.
sorry if this question might seem simple but I couldn't figure it out.
Imagine two arbitrary Rectangles that are randomly overlaped so that their outlines intersect at only two locations. Now you cut the area of overlap out of Rectangle 1.
This "bitten Rectangle 1" has now the following points (vertices): (1) All points of Rectangle 1 that lie outside of Rectangle 2, (2) All points of Rectangle 2 that lie inside Rectangle 1 and (3) the two intersection points.
The problem know is the following: How can I get the order of the new points so that the functions plot(...) or fill(...) would draw the right "Bitten Rectangle 1"?
What I did so far:
I determined the convex hull of all the points that lie outside of Rectangle 2 + the intersection points. Then one has to add the new points that lie inside rectangle 1 (due to overlap with Rectangle 2) between the indices of the first and second intersection point also in the right order.
The problem with this convex hull approach is that it only works if the intersection points lie on different lines of Rectangle 1, because then they are part of the convex hull.
If they lie on the same line they are no longer treated as part of the convex hull.
What I'd need is a method to get the order of all possible points that lie on the convex hull and not only the outer most ones.
Hope anybody can help me...
Thank you in advance,
Patrick
In Matlab, there is an amazing function called polybool that let you do any set operation on polygons: http://www.mathworks.com/help/toolbox/map/ref/polybool.html
All you have to do is to define four arrays describing the rectangles (rect1x, rect1y, rect2x and rect2y) and to call [resultx resulty] = polybool('subtraction', rect1x, rect1y, rect2x, rect2y). The resulting arrays will be describing the "Bitten Rectangle 1".