How can I use the secant method in order to calculate the angle b(between the positive x-axis and negative y-axis) I have to throw a ball for it to land on the x-axis, with these conditions:
the ball is thrown from origo, at a height z=1.4 m, with the and angle a (for the horizontal plane) 30◦, with a speed of 25 m / s. The air resistance coefficient is c = 0.070 and the wind force is 7 m / s at the ground which increases with the height according to: a(z) = 7 + 0.35z.
The motion of the ball is described with the following:
x''=−qx', y''=−q(y'−a(z)), z''=−9.81−qz', q=c*sqrt(x'^2+(y'−a(z))^2+z'^2)
I did a variable substitution (u) and then used RK4 to calculate the ball's motion, however I can't figure out how to use the secant method to find the angle b. The problem is that when I plot with these start and guessing values is that the ball doesn't land on the x-axis:
clear all, close all, clc
a = pi/3; %start angle
c = 0.07; % air resistance coeff.
v0 = 25; %start velocity, 25 m/s
t = 0; %start time
h = 0.1; % 0.1 second step
b = 0
x0 = 0; xPrim = v0*sin(a)*cosd(b);
y0 = 0; yPrim = v0*sin(a)*sind(b);
z0 = 1.4; zPrim = v0*cos(a);
u = [x0 xPrim y0 yPrim z0 zPrim]';
uVek = u';
% Secant method
b0 = 270; % Start guess nr 1
b1 = 360; % Start guess nr 2
f0 = funk (b0);
db = 1;
while abs(db) > 0.5e-8
f1 = funk (b1);
db = f1 * (b1 - b0) / (f1 - f0);
b0 = b1; % Updates b0
f0 = f1; % Updates f0
b1 = b1 - db % new b
end
while u(5) >= 0 && u(3)<=0
f1 = FRK4(t,u);
f2 = FRK4(t+h/2,u+(h/2)*f1);
f3 = FRK4(t+h/2,u+(h/2)*f2);
f4 = FRK4(t+h,u+h*f3);
f = (f1 + 2*f2 + 2*f3 + f4)/6;
u = u + h*f;
uVek = [uVek; u'];
t = t+h;
end
x = uVek(:,1)'; y = uVek(:,3)'; z = uVek(:,5)';
plot3(x,y,z)
xlabel('X');
ylabel('Y');
zlabel('Z');
grid on
where FRK4 is a function:
function uPrim = FRK4(t,u)
c = 0.07;
az = 7+0.35*(u(5));
q = c*sqrt(u(2)^2 +(u(4)- az)^2 + u(6)^2);
uPrim = [u(2) -q*u(2) u(4) -q*(u(4) - az) u(6) -9.81-q*u(6)]';
end
where funk is a function:
function f = funk(b)
a = pi/3
v0 = 25
x0 = 0; xPrim = v0*sin(a)*cosd(b);
y0 = 0; yPrim = v0*sin(a)*sind(b);
z0 = 1.4; zPrim = v0*cos(a);
f = [x0 xPrim y0 yPrim z0 zPrim]';
end
Related
I want to determine the Steepest descent of the Rosenbruck function using Armijo steplength where x = [-1.2, 1]' (the initial column vector).
The problem is, that the code has been running for a long time. I think there will be an infinite loop created here. But I could not understand where the problem was.
Could anyone help me?
n=input('enter the number of variables n ');
% Armijo stepsize rule parameters
x = [-1.2 1]';
s = 10;
m = 0;
sigma = .1;
beta = .5;
obj=func(x);
g=grad(x);
k_max = 10^5;
k=0; % k = # iterations
nf=1; % nf = # function eval.
x_new = zeros([],1) ; % empty vector which can be filled if length is not known ;
[X,Y]=meshgrid(-2:0.5:2);
fx = 100*(X.^2 - Y).^2 + (X-1).^2;
contour(X, Y, fx, 20)
while (norm(g)>10^(-3)) && (k<k_max)
d = -g./abs(g); % steepest descent direction
s = 1;
newobj = func(x + beta.^m*s*d);
m = m+1;
if obj > newobj - (sigma*beta.^m*s*g'*d)
t = beta^m *s;
x = x + t*d;
m_new = m;
newobj = func(x + t*d);
nf = nf+1;
else
m = m+1;
end
obj=newobj;
g=grad(x);
k = k + 1;
x_new = [x_new, x];
end
% Output x and k
x_new, k, nf
fprintf('Optimal Solution x = [%f, %f]\n', x(1), x(2))
plot(x_new)
function y = func(x)
y = 100*(x(1)^2 - x(2))^2 + (x(1)-1)^2;
end
function y = grad(x)
y(1) = 100*(2*(x(1)^2-x(2))*2*x(1)) + 2*(x(1)-1);
end
I am using a quiver plot in MATLAB to simulate a velocity field. Now I would like the vectors produced by the quiver plot to be all the same length, so that they just indicate the vectors direction. The value of the velocity in each point should be illustrated by different colors then.
Is there a possibility to have quiver plotting vectors of same length?
That's my current code:
%defining parameters:
age = 900;
vis= 15;
turbulences = zeros(9,3);
a = 0.01;
spacing = 1000;
[x,y] = meshgrid(-100000:spacing:100000);%, 0:spacing:10000);
u = a;
v = 0;
n = 0;
for i = 1:4
turbulences(i,1) = -80000 + n;
turbulences(i,2) = 15000;
n = 15000 * i;
end
n = 0;
for i = 5:9
turbulences(i,1) = -15000 + n*5000;
turbulences(i,2) = 4000;
n = n+1;
end
for i = 1:4
turbulences(i,3) = -1000;
end
for i = 5:9
turbulences(i,3) = 800;
end
%compute velocities in x and y direction
for k = 1:9
xc = turbulences(k,1);
yc = turbulences(k,2);
r1 = ((x-xc).^2 + (y-yc).^2);
r2 = ((x-xc).^2 + (y+yc).^2);
u = u + turbulences(k,3)/2*pi * (((y-yc)./r1).*(1-exp(-(r1./(4*vis*age)))) - ((y+yc)./r2).*(1-exp(-(r2./(4*vis*age)))));
v = v - turbulences(k,3)/2*pi* (((x-xc)./r1).*(1-exp(-(r1./(4*vis*age)))) - ((x-xc)./r2).*(1-exp(-(r2./(4*vis*age)))));
end
quiver(x,y,u,v);
grid on;
Thank you for your help!
One way to do this would be to normalize each component of your vectors to +- 1 just to keep their direction.
un = u./abs(u); % normalized u
vn = v./abs(v); % normalized v
quiver(x, y, un, vn)
I work to about missile routing. I calculated throuhout the flight x,y,z coordinates of missile . I have data set about missile x,y,z coordinates. My goal is to move the servo motor according to x, y, z coordinates.
My input is 3-dimensional(x,y,z). I want to simulate in two dimensions. And for this I use vectoral calculation. The servo motor can take values between 0-1. But the result larger than 1 . When the results are reduced at the same rate, result is smaller than 0. But I get still the error
Undefined function 'writePosition' for input arguments of type 'matlab.graphics.chart.primitive.Surface'.
I will be grateful if you could help me.
My data example:
missile_x = 0.015
missile_y = 0.054
missile_z = 0.254
missile_flight = 0.00018794
My flight rotation code:
missile_x = vpa(Xval{id}(k)/10,5)
missile_y = vpa(Yval{id}(k)/10,5)
missile_z = vpa(Zval{id}(k)/10,5)
missile_flight = vpa(0.00555556*(missile_x^2+missile_y^2+missile_z^2)^1/2,5)
writePosition(s, missile_flight);
current_pos = readPosition(s);
current_pos = current_pos*missile_flight;
fprintf('Current motor position is %d degrees\n', current_pos);
pause(2);
Missile X,Y,Z calculation code:
dt = 0.005; %time step
g = 9.81; %gravity
ro = 1.2; %air density
A = pi*(0.2)^2; % reference area
Vmag = 0; % missile velocity vectoral value [m/sn]
t = 0;
T(1) = t;
U(1) = 0; %the missile is initially at rest at t = 0; So the velocity is 0
V(1) = 0;
W(1) = 0;
X(1) = X0;
Y(1) = Y0;
Z(1) = Z0;
n = 1;
h = interp2(x_terrain, y_terrain, h_terrain,X(1), Y(1));
while (Z(n) >= h)
[Thx, Thy, Thz] = thrust(t, Thmag0, theta, phi, Tburn, U(n), V(n), W(n));
Vmag = (U(n)^2 + V(n)^2 + W(n)^2)^(1/2);
Thmag = (Thx^2 + Thy^2 + Thz^2)^(1/2);
m = mass(t, m0, mf, Tburn);
[rho,sound_speed] = atmosphere(Z(n));
Cd = drag_coeff(Vmag,sound_speed);
U(n+1) = U(n) + (Thx/m - (Cd*rho*A/(2*m))*(U(n)*(U(n)^2+V(n)^2+W(n)^2)^(1/2)))*dt;
V(n+1) = V(n) + (Thy/m - (Cd*rho*A/(2*m)*(V(n)*(U(n)^2+V(n)^2+W(n)^2)^(1/2))))*dt;
W(n+1) = W(n) + (Thz/m - (Cd*rho*A/(2*m))*(W(n)*(U(n)^2+V(n)^2+W(n)^2)^(1/2)) - g)*dt;
X(n+1) = X(n) + U(n+1)*dt;
Y(n+1) = Y(n) + V(n+1)*dt;
Z(n+1) = Z(n) + W(n+1)*dt;
h = interp2(x_terrain, y_terrain, h_terrain, ...
X(end), Y(end));
t = t + dt;
T(n+1) = t;
n = n+1 ;
end
Tval = T;
Xval = X;
Yval = Y;
Zval = Z;
Does anyone know how to make an open active contour? I'm familiar with closed contours and I have several Matlab programs describing them. I've tried to change the matrix P but that was not enough: My Matlab code is as follows:
% Read in the test image
GrayLevelClump=imread('cortex.png');
cortex_grad=imread('cortex_grad.png');
rect=[120 32 340 340];
img=imcrop(GrayLevelClump,rect);
grad_mag=imcrop(cortex_grad(:,:,3),rect);
% Draw the initial snake as a line
a=300;b=21;c=21;d=307;
snake = brlinexya(a,b,c,d); % startpoints,endpoints
x0=snake(:,1);
y0=snake(:,2);
N=length(x0);
x0=x0(1:N-1)';
y0=y0(1:N-1)';
% parameters for the active contour
alpha = 5;
beta = 10;
gamma = 1;
kappa=1;
iterations = 50;
% Make a force field
[u,v] = GVF(-grad_mag, 0.2, 80);
%disp(' Normalizing the GVF external force ...');
mag = sqrt(u.*u+v.*v);
px = u./(mag+(1e-10)); py = v./(mag+(1e-10));
% Make the coefficient matrix P
x=x0;
y=y0;
N = length(x0);
a = gamma*(2*alpha+6*beta)+1;
b = gamma*(-alpha-4*beta);
c = gamma*beta;
P = diag(repmat(a,1,N));
P = P + diag(repmat(b,1,N-1), 1) + diag( b, -N+1);
P = P + diag(repmat(b,1,N-1),-1) + diag( b, N-1);
P = P + diag(repmat(c,1,N-2), 2) + diag([c,c],-N+2);
P = P + diag(repmat(c,1,N-2),-2) + diag([c,c], N-2);
P = inv(P);
d = gamma * (-alpha);
e = gamma * (2*alpha);
% Do the modifications to the matrix in order to handle OAC
P(1:2,:) = 0;
P(1,1) = -gamma;
P(2,1) = d;
P(2,2) = e;
P(2,3) = d;
P(N-1:N,:) = 0;
P(N-1,N-2) = d;
P(N-1,N-1) = e;
P(N-1,N) = d;
P(N,N) = -gamma;
x=x';
y=y';
figure,imshow(grad_mag,[]);
hold on, plot([x;x(1)],[y;y(1)],'r');
plot(x([1 end]),y(([1 end])), 'b.','MarkerSize', 20);
for ii = 1:50
% Calculate external force
vfx = interp2(px,x,y,'*linear');
vfy = interp2(py,x,y,'*linear');
tf=isnan(vfx);
ind=find(tf==1);
if ~isempty(ind)
vfx(ind)=0;
end
tf=isnan(vfy);
ind=find(tf==1);
if ~isempty(ind)
vfy(ind)=0;
end
% Move control points
x = P*(x+gamma*vfx);
y = P*(y+gamma*vfy);
%x = P * (gamma* x + gamma*vfx);
%y = P * (gamma* y + gamma*vfy);
if mod(ii,5)==0
plot([x;x(1)],[y;y(1)],'b')
end
end
plot([x;x(1)],[y;y(1)],'r')
I've modified the coefficient matrix P in order to handle cases with open ended active contours, but that is clearly not enough.
My image:
I want to move a red star marker along the spiral trajectory with an equal distance of 5 units between the red star points on its circumference like in the below image.
vertspacing = 10;
horzspacing = 10;
thetamax = 10*pi;
% Calculation of (x,y) - underlying archimedean spiral.
b = vertspacing/2/pi;
theta = 0:0.01:thetamax;
x = b*theta.*cos(theta)+50;
y = b*theta.*sin(theta)+50;
% Calculation of equidistant (xi,yi) points on spiral.
smax = 0.5*b*thetamax.*thetamax;
s = 0:horzspacing:smax;
thetai = sqrt(2*s/b);
xi = b*thetai.*cos(thetai);
yi = b*thetai.*sin(thetai);
plot(x,y,'b-');
hold on
I want to get a figure that looks like the following:
This is my code for the circle trajectory:
% Initialization steps.
format long g;
format compact;
fontSize = 20;
r1 = 50;
r2 = 35;
r3= 20;
xc = 50;
yc = 50;
% Since arclength = radius * (angle in radians),
% (angle in radians) = arclength / radius = 5 / radius.
deltaAngle1 = 5 / r1;
deltaAngle2 = 5 / r2;
deltaAngle3 = 5 / r3;
theta1 = 0 : deltaAngle1 : (2 * pi);
theta2 = 0 : deltaAngle2 : (2 * pi);
theta3 = 0 : deltaAngle3 : (2 * pi);
x1 = r1*cos(theta1) + xc;
y1 = r1*sin(theta1) + yc;
x2 = r2*cos(theta2) + xc;
y2 = r2*sin(theta2) + yc;
x3 = r3*cos(theta3) + xc;
y3 = r3*sin(theta3) + yc;
plot(x1,y1,'color',[1 0.5 0])
hold on
plot(x2,y2,'color',[1 0.5 0])
hold on
plot(x3,y3,'color',[1 0.5 0])
hold on
% Connecting Line:
plot([70 100], [50 50],'color',[1 0.5 0])
% Set up figure properties:
% Enlarge figure to full screen.
set(gcf, 'Units', 'Normalized', 'OuterPosition', [0, 0, 1, 1]);
drawnow;
axis square;
for i = 1 : length(theta1)
plot(x1(i),y1(i),'r*')
pause(0.1)
end
for i = 1 : length(theta2)
plot(x2(i),y2(i),'r*')
pause(0.1)
end
for i = 1 : length(theta3)
plot(x3(i),y3(i),'r*')
pause(0.1)
end
I can't think of a way to compute distance along a spiral, so I'm approximating it with circles, in hopes that it will still be useful.
My solution relies on the InterX function from FEX, to find the intersection of circles with the spiral. I am providing an animation so it is easier to understand.
The code (tested on R2017a):
function [x,y,xi,yi] = q44916610(doPlot)
%% Input handling:
if nargin < 1 || isempty(doPlot)
doPlot = false;
end
%% Initialization:
origin = [50,50];
vertspacing = 10;
thetamax = 5*(2*pi);
%% Calculation of (x,y) - underlying archimedean spiral.
b = vertspacing/(2*pi);
theta = 0:0.01:thetamax;
x = b*theta.*cos(theta) + origin(1);
y = b*theta.*sin(theta) + origin(2);
%% Calculation of equidistant (xi,yi) points on spiral.
DST = 5; cRes = 360;
numPts = ceil(vertspacing*thetamax); % Preallocation
[xi,yi] = deal(NaN(numPts,1));
if doPlot && isHG2() % Plots are only enabled if the MATLAB version is new enough.
figure(); plot(x,y,'b-'); hold on; axis equal; grid on; grid minor;
hAx = gca; hAx.XLim = [-5 105]; hAx.YLim = [-5 105];
hP = plot(xi,yi,'r*');
else
hP = struct('XData',xi,'YData',yi);
end
hP.XData(1) = origin(1); hP.YData(1) = origin(2);
for ind = 2:numPts
P = InterX([x;y], makeCircle([hP.XData(ind-1),hP.YData(ind-1)],DST/2,cRes));
[~,I] = max(abs(P(1,:)-origin(1)+1i*(P(2,:)-origin(2))));
if doPlot, pause(0.1); end
hP.XData(ind) = P(1,I); hP.YData(ind) = P(2,I);
if doPlot, pause(0.1); delete(hAx.Children(1)); end
end
xi = hP.XData(~isnan(hP.XData)); yi = hP.YData(~isnan(hP.YData));
%% Nested function(s):
function [XY] = makeCircle(cnt, R, nPts)
P = (cnt(1)+1i*cnt(2))+R*exp(linspace(0,1,nPts)*pi*2i);
if doPlot, plot(P,'Color',lines(1)); end
XY = [real(P); imag(P)];
end
end
%% Local function(s):
function tf = isHG2()
try
tf = ~verLessThan('MATLAB', '8.4');
catch
tf = false;
end
end
function P = InterX(L1,varargin)
% DOCUMENTATION REMOVED. For a full version go to:
% https://www.mathworks.com/matlabcentral/fileexchange/22441-curve-intersections
narginchk(1,2);
if nargin == 1
L2 = L1; hF = #lt; %...Avoid the inclusion of common points
else
L2 = varargin{1}; hF = #le;
end
%...Preliminary stuff
x1 = L1(1,:)'; x2 = L2(1,:);
y1 = L1(2,:)'; y2 = L2(2,:);
dx1 = diff(x1); dy1 = diff(y1);
dx2 = diff(x2); dy2 = diff(y2);
%...Determine 'signed distances'
S1 = dx1.*y1(1:end-1) - dy1.*x1(1:end-1);
S2 = dx2.*y2(1:end-1) - dy2.*x2(1:end-1);
C1 = feval(hF,D(bsxfun(#times,dx1,y2)-bsxfun(#times,dy1,x2),S1),0);
C2 = feval(hF,D((bsxfun(#times,y1,dx2)-bsxfun(#times,x1,dy2))',S2'),0)';
%...Obtain the segments where an intersection is expected
[i,j] = find(C1 & C2);
if isempty(i), P = zeros(2,0); return; end
%...Transpose and prepare for output
i=i'; dx2=dx2'; dy2=dy2'; S2 = S2';
L = dy2(j).*dx1(i) - dy1(i).*dx2(j);
i = i(L~=0); j=j(L~=0); L=L(L~=0); %...Avoid divisions by 0
%...Solve system of eqs to get the common points
P = unique([dx2(j).*S1(i) - dx1(i).*S2(j), ...
dy2(j).*S1(i) - dy1(i).*S2(j)]./[L L],'rows')';
function u = D(x,y)
u = bsxfun(#minus,x(:,1:end-1),y).*bsxfun(#minus,x(:,2:end),y);
end
end
Result:
Note that in the animation above, the diameter of the circle (and hence the distance between the red points) is 10 and not 5.