I need help regarding the time series in Tableau. So far Here is what I can do.
Connect to TabPY
Call / Run scripts on TabPy
My current issue is that tableau doesn't seem to allow more output than input elements. Say I want to use the last 100 data points to predict the coming 10 points. Input of the data to python isn't a problem. The problem comes when I want to return a list with 110 elements. I've also tried returning the 10 elements and it complaints that it expects 100 elements list.
Thanks for reading
I've found a work around. You can see the post here for more information. Basically you shift the original values by the prediction amount and then have the prediction return the same amount as the shifted original
Related
I am trying to build a forecast for interest expense for floating debt in my company.
I have been given a set of ResetDates which help me match a given rate based on when the ResetDate is.
I have been successful in forecasting one period, but I need a much longer set of periods to satisfy my requirements.
I've tried derive nodes and nested if statements as well as filler nodes.
I am given this data to work with, I can only look at one ResetDate ahead.
Here you will find the data I used: Columns A/B/C/D is what i'm given, Column E (or 5th column from left to right) is what I want to derive as my output
I want to use 'InterestPayDate' and derive:
if it's more than 'NextReset' , the add 90 days to the 'NextReset' to create 'NextReset2'
That is as far as I can get.... where my problem lies is I want to look at NextReset2 and derive:
if 'InterestPayDate' is more than 'NextReset2', then add 90 days to 'NextReset2', if it's less than 'NextReset2', keep the current value for 'NextReset2'
Output should look like Column E here
Not sure if I need to dig deeper into the logical functions, in all honesty, I've just picked up SPSS and I am really trying to learn. Hopefully, you can point me in the right direction.
Thank you.
After computing the first NextReset2, you need to use a Filler node like the one below to change the value of the field.
You might need more than one identical nodes like this - one for each potential 90-day period that you are looking to extend the NextReset2 date. In your sample data, you will need at least two Filler nodes to get the correct value of NextReset2 for the last of the records.
There might be a more elegant way to do it, but this will work and it's easy enough to make copies of a node and string them together like this.
Please also see a sample IBM SPSS Modeler stream showing this approach here and using your sample data.
I have a need to pass a vector of arguments to Rserve from tableau. Specifically, I am using IRR calculations in R (on Rserve), and i want to pass vector of cash-flows that are as columns in my table (instead of rows/measure). So, i want to collect all those CF in a vector and pass it on to Rserve. Passing them one at a time slows down IO.
SCRIPT_REAL("r_func(c(.arg1, .arg2, .arg3))",sum(cf1), sum(cf2), sum(cf3))
cf1..cfn are cashflows corresponding to various periods. Above code works well when cf are few but takes a long time when i have few hundereds. Further, time spent is not in calculation but IO when communicating with remote Rserve. If i have a local Rserve, this calculation happens under few seconds while on remote, it takes well over a minute.
Also, want to point out that tableau / Rserve, set one argument after another and that takes time. My expectation is that once i have a vector, it would be just 1 transfer and setting of arguments, and therefore this should speed up
The first step in understanding how Tableau interacts with R or Python, is understanding how Tableau's table calcs work.
Tableau Script_XXX() functions are table calculations which means that you invoke them on a vector of aggregate query results and the corresponding R or Python code needs to return a vector usually of the same size. (I think you may be able to return a scalar or smaller vector which gets replicated to appear like a vector of the same size as the argument -- but not certain)
You can control how your data is partitioned into vectors, and also the ordering of data in the vectors, by editing the table calc to specify the partitioning and addressing for that calc.
Partitioning determines how your aggregate query results are broken up into vectors for calculation purposes. Addressing determines how the elements of each vector are ordered. You can either do that based on the physical layout of the table structure, or (better) based on the specific dimensions.
See the Tableau on-line help for table calcs for more info, and look online training videos from Tableau or blog entries (especially from anyone named Bora)
One way to test your understanding of these concepts is create a Tableau table (i.e., a viz with a mark type of text) with several dimensions on row and column shelves. Then create calculated fields for INDEX() and SIZE() and display them on text. Finally, change the partitioning and addressing in different ways by editing those table calcs. Try several different permutations. When you can confidently predict what those functions will produce for different settings, then you're ready to do more complex tasks - such as talking to R.
It is also instructive to experiment with FIRST(), LAST(), LOOKUP(), WINDOW_SUM() etc -- and finally dig into PREVIOUS_VALUE(). Warning, PREVIOUS_VALUE() is a bit odd, and does not behave the way you probably assume it does. Still, it is a useful technique that can implement a recursive calculation, and is about as close to a for loop as Tableau gets.
I've recently started a new job and having never used MATLAB before, I'm a little stuck. Any help would be much appreciated.
Here is the story. I have been given the velocities of fragmentation pellets at time intervals of 0.001 milliseconds. There are 28 gauges (i.e 28 sets of data) and each gauge has 20,000 readings. I have created a matrix consisting of all this data.
My objective to take that matrix and create 2 more matrices with the corresponding displacement and acceleration values of each reading. The next step is to export the time and acceleration values to an excel spreadsheet.
I am at a loss as to how to do this. I have tried to integrate and differentiate but I cant seem to get it right. Is it possible to create a function that takes the velocity data and automatically calculates acceleration/displacement? (This would make things easier as people in the future could use that same code)
Any help on how to solve any part of this problem would be much appreciated. I've only been using the software 3 days.
Many thanks.
I have a simulation with a lot of random components, so I would like to run many simulations and average the results (the result is determined by a variable called score).
How would you do this in Netlogo?
Currently I'm working on a program that will export the results to csv, then I plan to use python/excel to average them. I don't like this because I want to run 100+ simulations (so there will be 100+ files)... I'm hoping there is a better solution
EDIT or an implementation of what I described (I have to relearn enough python/vba to solve this, so it's going to take me some time)
This should be simple enough if you use BehaviorSpace.
In your experiment definition, put score in the Measure runs using these reporters textbox and uncheck Measure run at every step.
When you run your experiment, save your results using Table output. It will produce a csv that you can open in your spreadsheet application. From there, producing an average of the score column should be trivial.
I have a set of data for the past 5 years. Approx 7000 rows of data with features that are binary {yes/no} or are multi-classed {product A, B, C} A total of about 20+ features.
I am trying to make a program (or one time analysis project) to determine (predict) the product shipdate(shipping delay days) based on this historical data. I have 2 columns that indicate when a product was planned to be shipped and another column of when it was actually shipped! Currently.
I'm wondering how I can make a prediction program that determines based on the historic data when new data input of a product will expect to ship. I don't care about a getting a specific date but even just a program that can tell me number of delay days to add...
I took an ML class a while back and I wasn't sure how to start something like this. Any advice? Plus the closest thing to this I can think of is an image recognition assignment using NN. but that was too easy here I have to deal with a date instead of pixel white/black.... I used Matlab back in the day (I still know how to use it) but I just downloaded Weka data mining tool.
I was thinking of a neural network but I'm not sure how to set it up to have my program give me a the expected delay time (# of days/month) from the inputed ship date.
Basically,
I want to input (size = 5, prod = A, ....,expected ship date = jan 1st)
and the program returns the number of days to add as a delay onto my expected ship date given the historical trends...
Would appreciate any any help on how start something like this the correct/easiest/best way... Thanks in advance.
If you use weka, then get your input/label data into the arff format and then you try out all the different regressors (this is a regression problem after all). To avoid having to do too much programming quite yet (if you are just in an exploratory phase), use the weka experimenter which has a GUI for trying out a whole bunch of regressors on your dataset.
Then when you find one that does something expected and you want to do some more data analysis using MATLAB, then you can use a weka/matlab interface.