Draw non full matrix of random numbers - matlab

I am doing a Monte-Carlo simulation, where each repetition requires the sum or product of a random number of random variables. My problem is how to do this efficiently as the entire simulation should be as vectorized as possible.
For example, say we want to take the sum of 5, 10 and 3 random numbers, represented by the vector len = [5;10;3]. Then what I am currently doing is drawing a full matrix of random numbers:
A = randn(length(len),max(len));
Creating a mask of the non-needed numbers:
lenlen = repmat(len,1,max(len));
idx = repmat(1:max(len),length(len),1);
mask = idx>lenlen;
and then I can "pad", the matrix as I am interested in the sum the padding have to be zero (for the case with the product the padding had to be 1)
A(mask)=0;
To obtain:
A =
1.7708 -1.4609 -1.5637 -0.0340 0.9796 0 0 0 0 0
1.8034 -1.5467 0.3938 0.8777 0.6813 1.0594 -0.3469 1.7472 -0.4697 -0.3635
1.5937 -0.1170 1.5629 0 0 0 0 0 0 0
Whereafter I can sum them together
B = sum(A,2);
However, I find it rather superfluous that I have to draw too many random numbers and then throw them away. In the real case, I need in the range of hundred thousands of repetitions and the vector len might vary a lot, i.e. it can easily be that I have to draw twice or three times the number of random numbers than of what is needed.

You can generate the exact amount of random numbers required, create a grouping variable with repelem, and compute the sum of each group using accumarray:
len = [5; 10; 3];
B = accumarray(repelem(1:numel(len), len).', randn(sum(len),1));

You could just use arrayfun or a loop. You say "efficient" and "vectorized" in the same breath, but they are not necessarily the same thing - since the new(ish) JIT compiler, loops are pretty fast in MATLAB. arrayfun is basically a loop in disguise, but means you could create B like so:
len = [5;10;3];
B = arrayfun( #(x) sum( randn(x,1) ), len );
For each element in len, this creates a vector of length len(i) and takes the sum. The output is an array with one value for each value in len.
This will certainly be a lot more memory friendly for large values and largely different values within len. It may therefore be quicker, your mileage may vary but it cuts out a lot of the operations you're doing.
You mention wanting to take the product sometimes, in which case use prod in place of sum.
Edit: rough and ready benchmark to compare arrayfun and a loop...
len = randi([1e3, 1e7], 100, 1);
tic;
B = arrayfun( #(x) sum( randn(x,1) ), len );
toc % ~8.77 seconds
tic;
out=zeros(size(len));
for ii = 1:numel(len)
out(ii) = sum(randn(len(ii),1));
end
toc % ~8.80 seconds
The "advantage" of the loop over arrayfun is you can pre-generate all of the random numbers in one go, then index. This isn't necesarryily quicker because you're addressing much bigger chunks of memory, and the call to randn is the main bottleneck anyway!
tic;
out = zeros(size(len));
rnd = randn(sum(len),1);
idx = [0; cumsum(len)]; % note: cumsum is very quick (~0.001sec here) so negligible
for ii = 1:numel(len)
out(ii) = sum(rnd(idx(ii)+1:idx(ii+1)),1);
end
toc % ~10.2 sec! Slower because of massive call to randn and the indexing into large array.
As stated at the top, arrayfun and looping are basically the same under the hood, so no reason to expect a big time difference.

The sum of multiple random numbers drawn from a specific distribution is also a random number with a (different) specific distribution. Therefore you can just cut the middleman and draw directly from the latter distribution.
In your case you are summing 3, 10 and 5 numbers drawn from a N(0,1) distribution. As explained here, the resulting distributions therefore are N(0,3), N(0,10) and N(0,5). This page explains how you can draw from non-standard normal distributions in Matlab. As such, we can in this case generate those numbers with randn(3,1).*sqrt([5; 10; 3]).
In case you would want 1000 triples, you could then use
randn(3,1000).*sqrt([5; 10; 3])
or pre Matlab2016b
bsxfun(#times, randn(3,1000), sqrt([5; 10; 3]))
which is of course very fast.
Different distributions have different summation rules, but as long as you are not summing up numbers drawn from different distributions the rules are usually quite simple and found quickly with google.

You can do this using a combination of cumsum and diff. The plan is:
Create all the random numbers in a single call to randn up front
Then, use cumsum to produce a vector of cumulative summations
Use cumsum on the list of number-of-samples-per-result to work out where to read out the results
We also need diff to correct for the prior summations.
Note that this method might lose accuracy if you weren't using randn for the random samples, as cumsum would then build up arithmetic rounding errors.
% We want 100 sums of random numbers
numSamples = 100;
% Here's where we define how many random samples contribute to each sum
numRandsPerSample = randi(5, 1, numSamples);
% Let's make all the random numbers in one call
allRands = randn(1, sum(numRandsPerSample));
% Use CUMSUM to build up a cumulative sum of the whole of allRands. We also
% need a leading 0 for the first sum.
allRandsCS = [0, cumsum(allRands)];
% Use CUMSUM again to pick out the places we need to pick from
% allRandsCS
endIdxs = 1 + [0, cumsum(numRandsPerSample)];
% Use DIFF to subtract the prior sums from the result.
result = diff(allRandsCS(endIdxs))

Related

Repeat random, unique sampling of k values n times

In Matlab, I would like to generate a matrix with 4 random, unique samples (out of 10) 7 times.
In order to avoid a for-loop, I thought I could just repeat my data and use datasample from Statistics and Machine Learning Toolbox on the first dimension. But it always chooses the same 4 values from each column, so this is kind of useless.
Consider the following MWE:
randomData = [50.29; 47.72; 48.38; 48.02; 44.23; 47.17; 48.19; 49.11; 50.44; 53.40];
numOfReps = 7;
numOfSamples = 4;
randomDataRepMatrix = randomData*ones(1, numOfReps);
s = RandStream('mlfg6331_64');
y = datasample(s, randomDataRepMatrix, numOfSamples, 'Replace', false);
Even without the RandStream part, I get the same results...
Any idea? Or do I need to use the for-loop after all?
I don't think datasample or randsample can produce several sets of samples in one go. Here's a "manual" way to do it (not necessarily faster than using datasample with a loop):
[~, ind] = sort(rand(numel(randomData), numOfReps)); % each column is a permutation
ind = ind(1:numOfSamples,:); % keep only the first values in each column
y = randomData(ind); % index into data

Optimize nested for loop for calculating xcorr of matrix rows

I have 2 nested loops which do the following:
Get two rows of a matrix
Check if indices meet a condition or not
If they do: calculate xcorr between the two rows and put it into new vector
Find the index of the maximum value of sub vector and replace element of LAG matrix with this value
I dont know how I can speed this code up by vectorizing or otherwise.
b=size(data,1);
F=size(data,2);
LAG= zeros(b,b);
for i=1:b
for j=1:b
if j>i
x=data(i,:);
y=data(j,:);
d=xcorr(x,y);
d=d(:,F:(2*F)-1);
[M,I] = max(d);
LAG(i,j)=I-1;
d=xcorr(y,x);
d=d(:,F:(2*F)-1);
[M,I] = max(d);
LAG(j,i)=I-1;
end
end
end
First, a note on floating point precision...
You mention in a comment that your data contains the integers 0, 1, and 2. You would therefore expect a cross-correlation to give integer results. However, since the calculation is being done in double-precision, there appears to be some floating-point error introduced. This error can cause the results to be ever so slightly larger or smaller than integer values.
Since your calculations involve looking for the location of the maxima, then you could get slightly different results if there are repeated maximal integer values with added precision errors. For example, let's say you expect the value 10 to be the maximum and appear in indices 2 and 4 of a vector d. You might calculate d one way and get d(2) = 10 and d(4) = 10.00000000000001, with some added precision error. The maximum would therefore be located in index 4. If you use a different method to calculate d, you might get d(2) = 10 and d(4) = 9.99999999999999, with the error going in the opposite direction, causing the maximum to be located in index 2.
The solution? Round your cross-correlation data first:
d = round(xcorr(x, y));
This will eliminate the floating-point errors and give you the integer results you expect.
Now, on to the actual solutions...
Solution 1: Non-loop option
You can pass a matrix to xcorr and it will perform the cross-correlation for every pairwise combination of columns. Using this, you can forego your loops altogether like so:
d = round(xcorr(data.'));
[~, I] = max(d(F:(2*F)-1,:), [], 1);
LAG = reshape(I-1, b, b).';
Solution 2: Improved loop option
There are limits to how large data can be for the above solution, since it will produce large intermediate and output variables that can exceed the maximum array size available. In such a case for loops may be unavoidable, but you can improve upon the for-loop solution above. Specifically, you can compute the cross-correlation once for a pair (x, y), then just flip the result for the pair (y, x):
% Loop over rows:
for row = 1:b
% Loop over upper matrix triangle:
for col = (row+1):b
% Cross-correlation for upper triangle:
d = round(xcorr(data(row, :), data(col, :)));
[~, I] = max(d(:, F:(2*F)-1));
LAG(row, col) = I-1;
% Cross-correlation for lower triangle:
d = fliplr(d);
[~, I] = max(d(:, F:(2*F)-1));
LAG(col, row) = I-1;
end
end

Matlab: creating vector from 2 input vectors [duplicate]

I'm trying to insert multiple values into an array using a 'values' array and a 'counter' array. For example, if:
a=[1,3,2,5]
b=[2,2,1,3]
I want the output of some function
c=somefunction(a,b)
to be
c=[1,1,3,3,2,5,5,5]
Where a(1) recurs b(1) number of times, a(2) recurs b(2) times, etc...
Is there a built-in function in MATLAB that does this? I'd like to avoid using a for loop if possible. I've tried variations of 'repmat()' and 'kron()' to no avail.
This is basically Run-length encoding.
Problem Statement
We have an array of values, vals and runlengths, runlens:
vals = [1,3,2,5]
runlens = [2,2,1,3]
We are needed to repeat each element in vals times each corresponding element in runlens. Thus, the final output would be:
output = [1,1,3,3,2,5,5,5]
Prospective Approach
One of the fastest tools with MATLAB is cumsum and is very useful when dealing with vectorizing problems that work on irregular patterns. In the stated problem, the irregularity comes with the different elements in runlens.
Now, to exploit cumsum, we need to do two things here: Initialize an array of zeros and place "appropriate" values at "key" positions over the zeros array, such that after "cumsum" is applied, we would end up with a final array of repeated vals of runlens times.
Steps: Let's number the above mentioned steps to give the prospective approach an easier perspective:
1) Initialize zeros array: What must be the length? Since we are repeating runlens times, the length of the zeros array must be the summation of all runlens.
2) Find key positions/indices: Now these key positions are places along the zeros array where each element from vals start to repeat.
Thus, for runlens = [2,2,1,3], the key positions mapped onto the zeros array would be:
[X 0 X 0 X X 0 0] % where X's are those key positions.
3) Find appropriate values: The final nail to be hammered before using cumsum would be to put "appropriate" values into those key positions. Now, since we would be doing cumsum soon after, if you think closely, you would need a differentiated version of values with diff, so that cumsum on those would bring back our values. Since these differentiated values would be placed on a zeros array at places separated by the runlens distances, after using cumsum we would have each vals element repeated runlens times as the final output.
Solution Code
Here's the implementation stitching up all the above mentioned steps -
% Calculate cumsumed values of runLengths.
% We would need this to initialize zeros array and find key positions later on.
clens = cumsum(runlens)
% Initalize zeros array
array = zeros(1,(clens(end)))
% Find key positions/indices
key_pos = [1 clens(1:end-1)+1]
% Find appropriate values
app_vals = diff([0 vals])
% Map app_values at key_pos on array
array(pos) = app_vals
% cumsum array for final output
output = cumsum(array)
Pre-allocation Hack
As could be seen that the above listed code uses pre-allocation with zeros. Now, according to this UNDOCUMENTED MATLAB blog on faster pre-allocation, one can achieve much faster pre-allocation with -
array(clens(end)) = 0; % instead of array = zeros(1,(clens(end)))
Wrapping up: Function Code
To wrap up everything, we would have a compact function code to achieve this run-length decoding like so -
function out = rle_cumsum_diff(vals,runlens)
clens = cumsum(runlens);
idx(clens(end))=0;
idx([1 clens(1:end-1)+1]) = diff([0 vals]);
out = cumsum(idx);
return;
Benchmarking
Benchmarking Code
Listed next is the benchmarking code to compare runtimes and speedups for the stated cumsum+diff approach in this post over the other cumsum-only based approach on MATLAB 2014B-
datasizes = [reshape(linspace(10,70,4).'*10.^(0:4),1,[]) 10^6 2*10^6]; %
fcns = {'rld_cumsum','rld_cumsum_diff'}; % approaches to be benchmarked
for k1 = 1:numel(datasizes)
n = datasizes(k1); % Create random inputs
vals = randi(200,1,n);
runs = [5000 randi(200,1,n-1)]; % 5000 acts as an aberration
for k2 = 1:numel(fcns) % Time approaches
tsec(k2,k1) = timeit(#() feval(fcns{k2}, vals,runs), 1);
end
end
figure, % Plot runtimes
loglog(datasizes,tsec(1,:),'-bo'), hold on
loglog(datasizes,tsec(2,:),'-k+')
set(gca,'xgrid','on'),set(gca,'ygrid','on'),
xlabel('Datasize ->'), ylabel('Runtimes (s)')
legend(upper(strrep(fcns,'_',' '))),title('Runtime Plot')
figure, % Plot speedups
semilogx(datasizes,tsec(1,:)./tsec(2,:),'-rx')
set(gca,'ygrid','on'), xlabel('Datasize ->')
legend('Speedup(x) with cumsum+diff over cumsum-only'),title('Speedup Plot')
Associated function code for rld_cumsum.m:
function out = rld_cumsum(vals,runlens)
index = zeros(1,sum(runlens));
index([1 cumsum(runlens(1:end-1))+1]) = 1;
out = vals(cumsum(index));
return;
Runtime and Speedup Plots
Conclusions
The proposed approach seems to be giving us a noticeable speedup over the cumsum-only approach, which is about 3x!
Why is this new cumsum+diff based approach better than the previous cumsum-only approach?
Well, the essence of the reason lies at the final step of the cumsum-only approach that needs to map the "cumsumed" values into vals. In the new cumsum+diff based approach, we are doing diff(vals) instead for which MATLAB is processing only n elements (where n is the number of runLengths) as compared to the mapping of sum(runLengths) number of elements for the cumsum-only approach and this number must be many times more than n and therefore the noticeable speedup with this new approach!
Benchmarks
Updated for R2015b: repelem now fastest for all data sizes.
Tested functions:
MATLAB's built-in repelem function that was added in R2015a
gnovice's cumsum solution (rld_cumsum)
Divakar's cumsum+diff solution (rld_cumsum_diff)
knedlsepp's accumarray solution (knedlsepp5cumsumaccumarray) from this post
Naive loop-based implementation (naive_jit_test.m) to test the just-in-time compiler
Results of test_rld.m on R2015b:
Old timing plot using R2015a here.
Findings:
repelem is always the fastest by roughly a factor of 2.
rld_cumsum_diff is consistently faster than rld_cumsum.
repelem is fastest for small data sizes (less than about 300-500 elements)
rld_cumsum_diff becomes significantly faster than repelem around 5 000 elements
repelem becomes slower than rld_cumsum somewhere between 30 000 and 300 000 elements
rld_cumsum has roughly the same performance as knedlsepp5cumsumaccumarray
naive_jit_test.m has nearly constant speed and on par with rld_cumsum and knedlsepp5cumsumaccumarray for smaller sizes, a little faster for large sizes
Old rate plot using R2015a here.
Conclusion
Use repelem below about 5 000 elements and the cumsum+diff solution above.
There's no built-in function I know of, but here's one solution:
index = zeros(1,sum(b));
index([1 cumsum(b(1:end-1))+1]) = 1;
c = a(cumsum(index));
Explanation:
A vector of zeroes is first created of the same length as the output array (i.e. the sum of all the replications in b). Ones are then placed in the first element and each subsequent element representing where the start of a new sequence of values will be in the output. The cumulative sum of the vector index can then be used to index into a, replicating each value the desired number of times.
For the sake of clarity, this is what the various vectors look like for the values of a and b given in the question:
index = [1 0 1 0 1 1 0 0]
cumsum(index) = [1 1 2 2 3 4 4 4]
c = [1 1 3 3 2 5 5 5]
EDIT: For the sake of completeness, there is another alternative using ARRAYFUN, but this seems to take anywhere from 20-100 times longer to run than the above solution with vectors up to 10,000 elements long:
c = arrayfun(#(x,y) x.*ones(1,y),a,b,'UniformOutput',false);
c = [c{:}];
There is finally (as of R2015a) a built-in and documented function to do this, repelem. The following syntax, where the second argument is a vector, is relevant here:
W = repelem(V,N), with vector V and vector N, creates a vector W where element V(i) is repeated N(i) times.
Or put another way, "Each element of N specifies the number of times to repeat the corresponding element of V."
Example:
>> a=[1,3,2,5]
a =
1 3 2 5
>> b=[2,2,1,3]
b =
2 2 1 3
>> repelem(a,b)
ans =
1 1 3 3 2 5 5 5
The performance problems in MATLAB's built-in repelem have been fixed as of R2015b. I have run the test_rld.m program from chappjc's post in R2015b, and repelem is now faster than other algorithms by about a factor 2:

Weighted sampling without replacement in Matlab

I have a population p of indices and corresponding weights in vector w. I want to get k samples from this population without replacement where the selection is done proportional to the weights in random.
I know that randsample can be used for selection with replacement by saying
J = randsample(p,k,true,w)
but when I call it with parameter false instead of true, I get
??? Error using ==> randsample at 184
Weighted sampling without replacement is not supported.
I wrote my own function as discussed in here:
p = 1:n;
J = zeros(1,k);
for i = 1:k
J(i) = randsample(p,1,true,w);
w(p == J(i)) = 0;
end
But since it has k iterations in the loop, I seek for a shorter/faster way to do this. Do you have any suggestions?
EDIT: I want to randomly select k unique columns of a matrix proportional to some weighting criteria. That is why I use sampling without replacement.
I don't think it is possible to avoid some sort of loop, since sampling without replacement means that the samples are no longer independent. Besides, what does the weighting actually mean when sampling without replacement?
In any case, for relatively small sample sizes I don't think you will notice any problem with performance. All the solutions I can think of basically do what you have done, but possibly expand out what is going on in randsample.
I think you should keep using the for, but I suggest to reduce the corresponding weight by one.
w(p == J(i)) = w(p == J(i)) -1;
This still shows up in search results, so I wanted to add the datasample function as an option. The following code will provide a weighted sample of 5 units from fromVector according the corresponding vector myWeights.
mySample = datasample(fromVector, 5, 'Replace', false, 'Weights', myWeights)
An alternative to the for loop approach of petrichor that performs well if the number of samples is much smaller than the number of elements is to compute a weighted random sample with replacement and then remove duplicates. Of course, this is a very bad idea if the number of samples k is near the number of elements n, as this will require many iterations, but by avoiding for loops, the wall clock performance is often better. Your mileage may vary.
function I=randsample_noreplace(n,k,w)
I = sort(randsample(n, k, true, w));
while 1
Idup = find( I(2:end)-I(1:end-1) ==0);
if length(Idup) == 0
break
else
I(Idup)=randsample(n, length(Idup), true, w);
I = sort(I);
end
end
If you want to select a large fraction of the columns (i.e., k is not very much smaller than n), or if the weights are very skewed, you can use this refinement of Jeff's solution, which ensures that each call to randsample produces samples distinct from the previous ones.
Moreover, it returns the samples in the order in which true sampling without replacement would return them, rather than sorted.
function I=randsample_noreplace(n,k,w)
I = randsample(n, k, true, w);
while 1
[II, idx] = sort(I);
Idup = [false, diff(II)==0];
if ~any(Idup)
break
else
w(I) = 0; %% Don't replace samples
Idup (idx) = Idup; %% find duplicates in original list
I = [I(~Idup), (randsample(n, sum(Idup), true, w))];
end
end
When selecting 29 out of 30 values with uniform weights (the case that gives least benefit), it takes 3 or 4 iterations, compared with 26 without the additional line. If the weights are chosen uniformly, it still takes 3 to 5 iterations compared with around 80 without the additional line.
Also, the number of iterations is bounded by k, however skewed the distribution is.

Extremely large weighted average

I am using 64 bit matlab with 32g of RAM (just so you know).
I have a file (vector) of 1.3 million numbers (integers). I want to make another vector of the same length, where each point is a weighted average of the entire first vector, weighted by the inverse distance from that position (actually it's position ^-0.1, not ^-1, but for example purposes). I can't use matlab's 'filter' function, because it can only average things before the current point, right? To explain more clearly, here's an example of 3 elements
data = [ 2 6 9 ]
weights = [ 1 1/2 1/3; 1/2 1 1/2; 1/3 1/2 1 ]
results=data*weights= [ 8 11.5 12.666 ]
i.e.
8 = 2*1 + 6*1/2 + 9*1/3
11.5 = 2*1/2 + 6*1 + 9*1/2
12.666 = 2*1/3 + 6*1/2 + 9*1
So each point in the new vector is the weighted average of the entire first vector, weighting by 1/(distance from that position+1).
I could just remake the weight vector for each point, then calculate the results vector element by element, but this requires 1.3 million iterations of a for loop, each of which contains 1.3million multiplications. I would rather use straight matrix multiplication, multiplying a 1x1.3mil by a 1.3milx1.3mil, which works in theory, but I can't load a matrix that large.
I am then trying to make the matrix using a shell script and index it in matlab so only the relevant column of the matrix is called at a time, but that is also taking a very long time.
I don't have to do this in matlab, so any advice people have about utilizing such large numbers and getting averages would be appreciated. Since I am using a weight of ^-0.1, and not ^-1, it does not drop off that fast - the millionth point is still weighted at 0.25 compared to the original points weighting of 1, so I can't just cut it off as it gets big either.
Hope this was clear enough?
Here is the code for the answer below (so it can be formatted?):
data = load('/Users/mmanary/Documents/test/insertion.txt');
data=data.';
total=length(data);
x=1:total;
datapad=[zeros(1,total) data];
weights = ([(total+1):-1:2 1:total]).^(-.4);
weights = weights/sum(weights);
Fdata = fft(datapad);
Fweights = fft(weights);
Fresults = Fdata .* Fweights;
results = ifft(Fresults);
results = results(1:total);
plot(x,results)
The only sensible way to do this is with FFT convolution, as underpins the filter function and similar. It is very easy to do manually:
% Simulate some data
n = 10^6;
x = randi(10,1,n);
xpad = [zeros(1,n) x];
% Setup smoothing kernel
k = 1 ./ [(n+1):-1:2 1:n];
% FFT convolution
Fx = fft(xpad);
Fk = fft(k);
Fxk = Fx .* Fk;
xk = ifft(Fxk);
xk = xk(1:n);
Takes less than half a second for n=10^6!
This is probably not the best way to do it, but with lots of memory you could definitely parallelize the process.
You can construct sparse matrices consisting of entries of your original matrix which have value i^(-1) (where i = 1 .. 1.3 million), multiply them with your original vector, and sum all the results together.
So for your example the product would be essentially:
a = rand(3,1);
b1 = [1 0 0;
0 1 0;
0 0 1];
b2 = [0 1 0;
1 0 1;
0 1 0] / 2;
b3 = [0 0 1;
0 0 0;
1 0 0] / 3;
c = sparse(b1) * a + sparse(b2) * a + sparse(b3) * a;
Of course, you wouldn't construct the sparse matrices this way. If you wanted to have less iterations of the inside loop, you could have more than one of the i's in each matrix.
Look into the parfor loop in MATLAB: http://www.mathworks.com/help/toolbox/distcomp/parfor.html
I can't use matlab's 'filter' function, because it can only average
things before the current point, right?
That is not correct. You can always add samples (i.e, adding or removing zeros) from your data or from the filtered data. Since filtering with filter (you can also use conv by the way) is a linear action, it won't change the result (it's like adding and removing zeros, which does nothing, and then filtering. Then linearity allows you to swap the order to add samples -> filter -> remove sample).
Anyway, in your example, you can take the averaging kernel to be:
weights = 1 ./ [3 2 1 2 3]; % this kernel introduces a delay of 2 samples
and then simply:
result = filter(w,1,[data, zeros(1,3)]); % or conv (data, w)
% removing the delay introduced by the kernel
result = result (3:end-1);
You considered only 2 options:
Multiplying 1.3M*1.3M matrix with a vector once or multiplying 2 1.3M vectors 1.3M times.
But you can divide your weight matrix to as many sub-matrices as you wish and do a multiplication of n*1.3M matrix with the vector 1.3M/n times.
I assume that the fastest will be when there will be the smallest number of iterations and n is such that creates the largest sub-matrix that fits in your memory, without making your computer start swapping pages to your hard drive.
with your memory size you should start with n=5000.
you can also make it faster by using parfor (with n divided by the number of processors).
The brute force way will probably work for you, with one minor optimisation in the mix.
The ^-0.1 operations to create the weights will take a lot longer than the + and * operations to compute the weighted-means, but you re-use the weights across all the million weighted-mean operations. The algorithm becomes:
Create a weightings vector with all the weights any computation would need:
weights = (-n:n).^-0.1
For each element in the vector:
Index the relevent portion of the weights vector to consider the current element as the 'centre'.
Perform the weighted-mean with the weights portion and the entire vector. This can be done with a fast vector dot-multiply followed by a scalar division.
The main loop does n^2 additions and subractions. With n equal to 1.3 million that's 3.4 trillion operations. A single core of a modern 3GHz CPU can do say 6 billion additions/multiplications a second, so that comes out to around 10 minutes. Add time for indexing the weights vector and overheads, and I still estimate you could come in under half an hour.