Materialize implementation within package - scala

When using a macro to materialize an implementation of a trait, I'd like to create the implementation within a package so that it has access to other package-private classes.
trait MyTrait[T]
object MyTrait {
implicit def materialize[T]: MyTrait[T] = macro materializeImpl[T]
def materializeImpl[T : c.WeakTypeTag](c: blackbox.Context): c.Expr[MyTrait[T]] = {
val tt = weakTypeTag[T]
c.Expr[MyTrait[T]](q"new MyTrait[$tt] {}")
}
}
Is it possible to materialize new MyTrait[$tt] {} within a particular package?

A macro has to expand into an AST which would compile in the place the macro call is in. Since package declarations are only allowed at top-level, and method calls aren't allowed there, the expanded tree can't create anything in another package.

As Alexey Romanov pointed out this is not possible directly. Still if you call only a few methods (and if you use macro, most probably this is so), one possible (but not perfect) workaround might be creating a public abstract class or trait that extends the target trait and "publishes" all the required package private methods as protected proxies. So you can create instances in your macro from inheriting from that abstract class rather than trait. Obviously this trick effectively "leaks" those methods to anyone but thanks to reflection anyone can call any method if he really wants. And abusing this trick will show as deliberate effort to circumvent your separation as the usage of the reflection.

Related

What are the advantages or disadvantages of declaring function/method in companion objects versus declaring them in traits?

I am new to Scala and I now started a project in Scala and I see similar to the following construct:
trait SomeTrait extends SomeOtherStuff with SomeOtherStuff2
object SomeTrait {
def someFunction():Unit = { ??? }
}
I understand that for a class, companion objects hold methods that are used in a "static", like Factory methods in Java or something alike, but what about traits, why not put these methods in traits?
The first style is called mixin, it used to be somewhat popular back in the days.
It could be replaced by the following code:
object SomeOtherStuff {
def someMethod(): String
}
object SomeObj {
import SomeOtherStuff._
//now someMethod is available
def otherMethod(): String = someMethod + "!"
}
object Caller {
import SomeObj._
import SomeOtherStuff._
//utility methods from both objects are available here
}
Pros of mixins:
If SomeTrait extends 10 other mixins then extending this trait would allow to scrap 10 import statements
Cons of mixins:
1) creates unnecessary coupling between traits
2) awkward to use if the caller doesn't extend the mixin itself
Avoiding mixins for business-logic code is a safe choice.
Although I'm aware of 2 legitimate usecases:
1) importing DSLs
e.g. ScalaTest code :
class SomeSuite extends FunSuite with BeforeAndAfter {...}
2) working (as a library author) with implicit parameters:
e.g. object Clock extends LowPriorityImplicits
(https://github.com/typelevel/cats-effect/blob/master/core/shared/src/main/scala/cats/effect/Clock.scala#L127)
Another perspective to this is the OOP principle Composition Over Inheritance.
Pros of companion objects (composition):
composition can be done at runtime while traits are defined at compile time
you can easily have multiple of them. You don't have to deal with the quirks of multiple inheritance: say you have two traits that both have a method with the name foo - which one is going to be used or does it work at all? For me, it's easier to see the delegation of a method call, multiple inheritance tends to become complex very fast because you lose track where a method was actually defined
Pros of traits (mixins):
mixins seem more idiomatic to reuse, a class using a companion object of another class is odd. You can create standalone objects though.
it's cool for frameworks because it adds the frameworks functionality to your class without much effort. Something like that just isn't possible with companion objects.
In doubt, I prefer companion objects, but it always depends on your environment.

Choosing between Trait and Object

I was trying to look into trait and object in scala when it seems like we can use trait and object to do a similar task.
What should be the guiding principles on when to use trait and when to use object?
Edit:
As many of you are asking for an example
object PercentileStats {
def addPercentile(df: DataFrame): DataFrame // implementation
}
trait PercentileStats {
def addPercentile(df: DataFrame): DataFrame // implementation
}
There is a Process class which can use the object
object Process {
def doSomething(df: DataFrame): DataFrame {
PercentileStats.addPercentile(df)
}
}
We can also make it use the trait
object Process with PercentileStats {
def doSomething(df: DataFrame): DataFrame {
addPercentile(df)
}
}
I think the real question here is Where do I put stand-alone functions?
There are three options.
In the package
You can put stand-alone functions in the outer package scope. This makes them immediately available to the whole package but the name has to be meaningful across the whole package.
def addPercentile(df: DataFrame): DataFrame // implementation
In an object
You can group stand-alone functions in an object to provide a simple namespace. This means that you have to use the name of the object to access the functions, but it keeps them out of the global namespace and allows the names to be simpler:
object PercentileStats {
def add(df: DataFrame): DataFrame // implementation
}
In a trait
You can group stand-alone functions in a trait. This also removes them from the package namespace, but allows them to be accessed without a qualifier from classes that have that trait. But this also makes the method visible outside the class, and allows them to be overridden. To avoid this you should mark them protected final:
trait PercentileStats {
protected final def addPercentile(df: DataFrame): DataFrame // implementation
}
Which is best?
The choice really depends on how the function will be used. If a function is only to be used in a particular scope then it might make sense to put it in a trait, otherwise the other options are better. If there are a number of related function then grouping them in an object makes sense. One-off functions for general use can just go in the package.
Object - is a class that has exactly one instance. It is created lazily when it is referenced, like a lazy val.
As a top-level value, an object is a singleton.
Traits - are used to share interfaces and fields between classes.
Classes and objects can extend while traits cannot be instantiated and therefore have no parameters.
So, it means that if you prefer singleton type implementation with no new instance happen then use Object but if you want to inherit implementation to other class or objects then you can use trait.
Traits: are equivalent to interfaces in Java. So you can use it to define public contracts like interfaces in Java. In addition, a trait can be used to share values (beside methods) between classes extends the trait.
Objects in Scala is actually quite flexible. Example use cases include:
singletons: If you think that your objects are singletons (exactly
one instance exists in the program), you can use object.
factory: for instance, companion object of a class can be used as factory for creating instances of the class.
to share static methods: for example, common utilities can be declared in one object.
You also have to consider how you would want to use / import it.
trait Foo {
def test(): String
}
object Bar extends Foo
import Bar._
Objects enable you to import rather than mix in your class.
It is a life saver when you want to mock - with scalamock - a class that mixes a lot of traits and expose more than 22 methods that you don't really need exposed in the scope.

Use scala macros to copy method from class to companion object

I'll get straight to the business.
Let's say that I have the following trait definition:
trait Routable{
def routing(): String
}
And I'm defining the following class:
case class MyEvent(name: String, age: Int) extends Routable{
override def routing(): String = "this is my routing key"
}
I'm trying to make a macro called routeOf[MyEvent] to return the routing key of the defined class.
I tried so many things for the last 3 days and I'm starting to wonder if it is possible at all...
My macro definition is:
def routeOf[T]: Any = macro RouteOfMacro.impl[T]
def impl[T: c.WeakTypeTag](c: whitebox.Context): c.Tree
But I can't find how to extract the method from the WeakTypeTag (and the internet is not full with examples).
So can it be done?
I'm trying to make a macro called routeOf[MyEvent] to return the
routing key of the defined class.
The way your code is, it's not the routing key of the defined class, but of the instance.
If you create multiple MyEvent, there is no guarantee their routing keys would be alike.
What you can do is create a companion object MyEvent that derives from Routable. I feel classTag or typeTag may be enough for this case - do you know those? No macros should be needed. But until I know the larger picture, hard to say how I'd approach it. Can you reveal more? :)

Scala generic: require method to use class's type

I'm pretty new to Scala. I'm trying to write an abstract class whose methods will be required to be implemented on a subclass. I want to use generics to enforce that the method takes a parameter of the current class.
abstract class MySuper{
def doSomething:(MyInput[thisclass]=>MyResult)
}
class MySub extends MySuper{
override def doSomething:(MyInput[MySub]=>MyResult)
}
I know that thisclass above is invalid, but I think it kind of expresses what I want to say. Basically I want to reference the implementing class. What would be the valid way to go about this?
You can do this with a neat little trick:
trait MySuper[A <: MySuper[A]]{
def doSomething(that: A)
}
class Limited extends MySuper[Limited]{
def doSomething(that: Limited)
}
There are other approaches but I find this one works fairly well at expressing what you'd like.

Scala magic to make a private/protected member visible?

I am using an API where a trait is given like this:
package pkg
trait Trait {
private[pkg] def f = ...
private[pkg] val content = ...
}
I would like to access the variable content and function f in my code, using the API from a Jar file (so I cannot modify the original code to remove the private definition).
What I was able to come up with as a first solution is to create a new bridge class in the same package, that helps me access the private/protected member functions like this:
package pkg
trait PkgBridge {
def f = Trait.f
def getContent(t : Trait) = t.content;
}
This way I can call the package private members from my code.
I was wondering if there is any sophisticated way or common pattern for this kind of situations (like some magic with implicits or something?).
Thanks!
What you are doing works, is probably as good a way to do it as any, and is discouraged.
If something is package private it is probably an implementation detail for which an interface has not be specified sufficiently well to risk exposing anyone to it or to allow it to be completely private. So be careful! There may be good reason to not do this.
Aside from reflection, the only way within Scala to get at package private content is to be in that package, so your method is an appropriate one.
Note that this alternative might be useful as well:
package pkg {
trait TraitBridge extends Trait {
def fBridge = f
def contentBridge = content
}
}
and then you can
class MyClass extends TraitBridge { ... }
to specifically pick up the extensions that you want to have access to (under alternate names).