I would like to train two different Conv models in Keras with different input dimensions.
I have:
input_size=4
input_sizeB=6
model=Sequential()
model.add(Conv2D(filters=10,input_shape=
(1,time_steps,input_size),kernel_size(24,3),activation='relu',data_format='channels_first',kernel_regularizer=regularizers.l2(0.001)))
model.add(Flatten())
A= model.add(Dense(25,
activation='tanh',kernel_regularizer=regularizers.l2(0.003)))
model2=Sequential()
model2.add(Conv2D(filters=10,input_shape=
(1,time_steps,input_sizeB),kernel_size(24,3),activation='relu',data_format='channels_first',kernel_regularizer=regularizers.l2(0.001)))
model2.add(Flatten())
B= model2.add(Dense(25,
activation='tanh',kernel_regularizer=regularizers.l2(0.003)))
Now I would merge the two dense layers at the end of both Conv net.
How I should do?
Using the Sequential API, you can use the Merge layer (doc) as follows:
merged_layer = Merge([model, model2], mode='concat') # mode='sum', 'ave', etc.
merged_model = Sequential()
merged_model.add(merged_layer)
Note that this will throw a warning (depending on your version, the code should still work), as sequential Merge is getting deprecated. You could otherwise consider the Functional API, which offers some more flexibility in that regards c.f. the several pre-defined merge layers Keras provides depending on the operation you want to use (doc). Find an example below:
merged_layer = Concatenate()([model.output, model2.output])
merged_model = Model([model.input, model2.input], merged_layer)
Related
I am working on a inter-class and intra-class classification problem with one CNN such as first there is two classes Cat and Dog than in Cat there is a classification three different breeds of cats and in Dog there are 5 different breeds dogs.
I haven't tried the coding yet just working on feasibility if that works.
My question is what will be the feasible design for this kind of problem.
I am thinking to design for the training, first CNN-1 network that will differentiate cat and dog and gather the image data of all the training images. After the separation of cat and dog, CNN-2 and CNN-3 will train these images further for each breed of dog and cat. I am just not sure how the testing will work in this situation.
I have approached a similar problem previously in Python. Hopefully this is helpful and you can come up with an alternative implementation in Matlab if that is what you are using.
After all was said and done, I landed on a single model for all predictions. For your purpose you could have one binary output for dog vs. cat, another multi-class output for the dog breeds, and another multi-class output for the cat breeds.
Using Tensorflow, I created a mask for the irrelevant classes. For example, if the image was of a cat, then all of the dog breeds are irrelevant and they should not impact model training for that example. This required a customized TF Dataset (that converted 0's to -1 for the mask) and a customized loss function that returned 0 error when the mask was present for that example.
Finally for the training process. Specific to your question, you will have to create custom accuracy functions that can handle the mask values how you want them to, but otherwise this part of the process should be standard. It was best practice to evenly spread out the classes among the training data but they can all be trained together.
If you google "Multi-Task Training" you can find additional resources for this problem.
Here are some code snips if you are interested:
For the customize TF dataset that masked irrelevant labels...
# Replace 0's with -1 for mask when there aren't any labels
def produce_mask(features):
for filt, tensor in features.items():
if "target" in filt:
condition = tf.equal(tf.math.reduce_sum(tensor), 0)
features[filt] = tf.where(condition, tf.ones_like(tensor) * -1, tensor)
return features
def create_dataset(filepath, batch_size=10):
...
# **** This is where the mask was applied to the dataset
dataset = dataset.map(produce_mask, num_parallel_calls=cpu_count())
...
return parsed_features
Custom loss function. I was using binary-crossentropy because my problem was multi-label. You will likely want to adapt this to categorical-crossentropy.
# Custom loss function
def masked_binary_crossentropy(y_true, y_pred):
mask = backend.cast(backend.not_equal(y_true, -1), backend.floatx())
return backend.binary_crossentropy(y_true * mask, y_pred * mask)
Then for the custom accuracy metrics. I was using top-k accuracy, you may need to modify for your purposes, but this will give you the general idea. When comparing this to the loss function, instead of converting all to 0, which would over-inflate the accuracy, this function filters those values out entirely. That works because the outputs are measured individually, so each output (binary, cat breed, dog breed) would have a different accuracy measure filtered only to the relevant examples.
backend is keras backend.
def top_5_acc(y_true, y_pred, k=5):
mask = backend.cast(backend.not_equal(y_true, -1), tf.bool)
mask = tf.math.reduce_any(mask, axis=1)
masked_true = tf.boolean_mask(y_true, mask)
masked_pred = tf.boolean_mask(y_pred, mask)
return top_k_categorical_accuracy(masked_true, masked_pred, k)
Edit
No, in the scenario I described above there is only one model and it is trained with all of the data together. There are 3 outputs to the single model. The mask is a major part of this as it allows the network to only adjust weights that are relevant to the example. If the image was a cat, then the dog breed prediction does not result in loss.
I'm trying to come up with a MLP model for timeseries prediction following this blog post. I have 138 timeseries with a lookback_window=28 (splitted as 50127 timeseries for traing and 24255 timeseries for validation). I need to predict the next value (timesteps=28, n_features=1). I started from a 3 layer network but it didn't train well. I tried to make the network deeper by adding more layers/more hunits, but it doesn't improve. In the picture, you can see the result of prediction of the following model Here is my model code:
inp = Input(batch_shape=(batch_size, lookback_window))
first_layer = Dense(1000, input_dim=28, activation='relu')(inp)
snd_layer = Dense(500)(first_layer)
thirs_layer = Dense(250)(snd_layer)
tmp = Dense(100)(thirs_layer)
tmp2 = Dense(50)(tmp)
tmp3 = Dense(25)(tmp2)
out = Dense(1)(tmp3)
model = Model(inp, out)
model.compile(loss='mean_squared_error', optimizer='adam')
history = model.fit(train_data, train_y,
epochs=1000,
batch_size=539,
validation_data=(validation_data, validation_y),
verbose=1,
shuffle=False)
What am I missing? How can I improve it?
The main thing I noticed is that you are not using non-linearities in your layers. I would use relus for the hidden layers and linear layer for the final layer in case you want values larger than 1 / -1 to be possible. If you do not want them to be possible use tanh. By increasing the data you make the problem harder and therefore your mostly linear model is underfitting severely.
I managed to get better results by the following changes:
Using RMSprop instead of Adam with lr=0.001, and as #TommasoPasini mentioned added them to all Dense layers (expect the last one). It improves the results a lot!
epochs= 3000 instead of 1000.
But now I think it is overfitting. Here are the plots of the results and the validation and train loss:
I am using Keras (version 2.0.0) and I'd like to make use of pretrained models like e.g. VGG16.
In order to get started, I ran the example of the [Keras documentation site ][https://keras.io/applications/] for extracting features with VGG16:
from keras.applications.vgg16 import VGG16
from keras.preprocessing import image
from keras.applications.vgg16 import preprocess_input
import numpy as np
model = VGG16(weights='imagenet', include_top=False)
img_path = 'elephant.jpg'
img = image.load_img(img_path, target_size=(224, 224))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)
features = model.predict(x)
The used preprocess_input() function bothers me
(the function does Zero-centering by mean pixel what can be seen by looking at the source code).
Do I really have to preprocess input data (validation/test data) before using a trained model?
a)
If yes, one can conclude that you always have to be aware of what preprocessing steps have been performed during training phase?!
b)
If no: Does preprocessing of validation/test data cause a bias?
I appreciate your help.
Yes you should use the preprocessing step. You can retrain the model without it but the first layers will learn to center your datas so this is a waste of parameters.
If you do not recenter your performances will suffer.
Great thread on reddit : https://www.reddit.com/r/MachineLearning/comments/3q7pjc/why_is_removing_the_mean_pixel_value_from_each/
I want to create a custom loss function for a double-input double-output model in Keras that:
minimizes the reconstruction error of two autoencoders;
maximizes the correlation of the bottleneck features of the autoencoders.
For this I need to pass to the loss function:
both inputs;
both outputs / reconstructions;
output of intermediate layers for both (hidden activations).
I know I can pass both inputs and outputs to Model, but am struggling to find a way to pass the hidden activations.
I could create two new Models that have the output of the intermediate layers and pass that to loss, like:
intermediate_layer_model1 = Model(input=input1, output=autoencoder.get_layer('encoded1').output)
intermediate_layer_model2 = Model(input=input2, output=autoencoder.get_layer('encoded2').output)
autoencoder.compile(optimizer='adadelta', loss=loss(intermediate_layer_model1, intermediate_layer_model2))
But still, I would need to find a way to match the y_true in loss to the correct intermediate model.
What is the right way to approach this?
Edit
Here's an approach that I think should work. Simplified:
# autoencoder 1
input1 = Input(shape=(input_dim,))
encoded1 = Dense(encoding_dim, activation='relu', name='encoded1')(input1)
decoded1 = Dense(input_dim, activation='sigmoid', name='decoded1')(encoded1)
# autoencoder 2
input2 = Input(shape=(input_dim,))
encoded2 = Dense(encoding_dim, activation='relu', name='encoded2')(input2)
decoded2 = Dense(input_dim, activation='sigmoid', name='decoded2')(encoded2)
# merge encodings
merge_layer = merge([encoded1, encoded2], mode='concat', name='merge', concat_axis=1)
model = Model(input=[input1, input2], output=[decoded1, decoded2, merge_layer])
model.compile(optimizer='rmsprop', loss={
'decoded1': 'binary_crossentropy',
'decoded2': 'binary_crossentropy',
'merge': correlation,
})
Then in correlation I can split y_pred and do the calculations.
How about:
Defining a single model with a multiple outputs (be sure that you named a coding and reconstruction layer properly):
duo_model = Model(input=input, output=[coding_layer, reconstruction_layer])
Compiling your model with two different losses (or even performing a loss reweighting):
duo_model.compile(optimizer='rmsprop',
loss={'coding_layer': correlation_loss,
'reconstruction_layer': 'mse'})
Taking your final model as a:
encoder = Model(input=input, output=[coding_layer])
autoencoder = Model(input=input, output=[reconstruction_layer])
After proper compilation this should do the job.
When it comes to defining a proper correlation loss function there are two ways:
when coding layer and your output layer have the same dimension -
you could easly use predefinied cosine_proximity function from
Keras library.
when coding layer has different dimensonality -
you shoud first find embedding of coding vector and reconstruction vector to the same space and then - compute correlation there. Remember that this embedding should either be a Keras layer / function or Theano / Tensor flow operation (depending on which backend you are using). Of course you can compute both embedding and correlation function as a part of one loss function.
I have data in form of rows and columns where rows represent a record and column represents its attributes.
I also have the labels (classes) for those records.
I know about decision trees concept and I would like to use matlab for classification of unseen records using decision trees.
How can this be done? I followed this link but its not giving me correct output-
Decision Tree in Matlab
Essentially I want to construct a decision tree based on training data and then predict the labels of my testing data using that tree. Can someone please give me a good and working example for this ?
I used following code to achieve it. And it is working correctly
function DecisionTreeClassifier(trainingFile, testingFile, labelsFile, outputFile)
training = csvread(trainingFile);
labels = csvread(labelsFile);
testing = csvread(testingFile);
tree = ClassificationTree.fit(training,labels)
prediction = predict(tree, testing)
csvwrite(outputFile, prediction)
ClassificationTree.fit will be removed in a future release. Use fitctree instead.