ODE solver using Lobatto IIIA with table of coefficients - matlab

So I'm trying to figure out how to solve a given equation y'=-y+2te^(-t+2) for t in [0,10], step of 0.01 and y(0)=0.
I am supposed to solve it using the Lobatto IIIA method following a Butcher tableau:
Coefficients table
So far, this is what I got:
function lob = Lobatto_solver()
h = 0.01;
t = 0:h:10;
y = zeros(size(t));
y(1) = 0;
f = #(t,y) -y + (2*t*(exp(-t+2)));
% Lobatto IIIA Method
for i=1:numel(y)-1
f1 = f(t(i), y(i));
f2 = f(t(i)+(1/2)*h, y(i) + (5/24)*h*f1 + (1/3)*h*f2 + (-1/24)*h*f3);
f3 = f(t(i)+h, y(i) + (1/6)*h*f1 + (2/3)*h*f2 + (1/6)*h*f3);
y(x) = y(i) + h*((-1/2)*f1 + (2)*f2 + (-1/2)*f3);
end
end
It obviously makes no sense from the point when I equal f2 to itself, when the variable is still undefined.
Any help would be much appreciated :)
Cheers

You will need a predictor-corrector loop, in the simple case the corrector uses the slope-equations as basis of a fixed-point iteration. In the code below I use also the value of an explicit Euler step, in principle you could initialize all slopes with f1.
function lob = Lobatto_solver()
h = 0.01;
t = 0:h:10;
y = zeros(size(t));
y(1) = 0;
f = #(t,y) -y + (2*t*(exp(-t+2)));
% Lobatto IIIA Method
for i=1:numel(y)-1
f1 = f(t(i), y(i));
f3 = f(t(i)+h, y(i)+h*f1)
f2 = (f1+f3)/2;
for k=1:3
f2 = f(t(i)+(1/2)*h, y(i) + (5/24)*h*f1 + (1/3)*h*f2 + (-1/24)*h*f3);
f3 = f(t(i)+h, y(i) + (1/6)*h*f1 + (2/3)*h*f2 + (1/6)*h*f3);
end;
y(i+1) = y(i) + h*((-1/2)*f1 + (2)*f2 + (-1/2)*f3);
end
plot(t,y,t,0.05+t.^2.*exp(-t+2))
end
The graph shows that the result (blue) is qualitatively correct, the exact solution curve (green) is shifted so that two distinct curves can be seen.

Related

system of equation Runge-Kutta 4th order for system of equation using matlab [duplicate]

This question already has answers here:
Solve a system of equations with Runge Kutta 4: Matlab
(2 answers)
Closed 4 years ago.
I need to do matlab code to solve the system of equation by using Runge-Kutta method 4th order but in every try i got problem and can't solve
the derivative is
(d^2 y)/dx^(2) +dy/dx-2y=0
, h=0.1 Y(0)=1 , dy/dx (0)=-2
{clear all, close all, clc
%{
____________________TASK:______________________
Solve the system of differential equations below
in the interval 0<x<1, with stepsize h = 0.1.
y= y1 y(0)=0
y3= 2y1-y2 y2(0)=-2
_______________________________________________
%}
h = 0.1;
x = 0:h:1
N = length(x);
y = zeros(N,1);
y3 = zeros(N,1);
g = #(x, y, y1, y2) y1;
f = #(x, y, y1, y2) 2*y1-y2;
y1(1) = 0;
y2(1) =-2;
for i = 1:(N-1)
k_1 = x(i)+y(i)
k_11=g(x(i),y,y(i))
k_2 = (x(i)+h/2)+(y(i)+0.5*h*k_1)
k_22=g((x(i)+0.5*h),y,(y(i)+0.5*h*k_11))
k_3 = (x(i)+h/2)+(y(i)+0.5*h*k_2)
k_33=g((X(i)+0.5*h),y,(y(i)+0.5*h*k_22));
k_4 = (x(i)+h)+(y(i)+h*k_33)
k_44=g((x(i)+h),y,(y(i)+k_33*h));
y3(i+1) = y(i) + (1/6)*(k_1+2*k_2+2*k_3+k_4)*h
y3(:,i)=y;
end
Answer_Matrix = [x' y3 ];}
You used functions, that's not really necessary, but it might be easier that way to see the formula more clearly. In your functions however, you list arguments that used present in the function. That's not needed, and creates unwanted overhead.
In your initial conditions you should use y and y3, since that are the ones you use in the loop. Also in the first condition you've made a typo.
In the loop you forget to call the function f, and to update the y vector.
Making these changes in your code results in the following:
h = 0.1;
x = 0:h:1;
N = length(x);
y = zeros(N,1);
y3 = zeros(N,1);
g = #(y2) y2;
f = #(y1, y2) 2*y1-y2;
y(1) = 1;
y3(1) = -2;
for i = 1:(N-1)
k_1 = f(y(i), y3(i));
k_11 = g(y3(i));
k_2 = f(y(i)+0.5*h*k_1, y3(i) +0.5*h*k_11);
k_22 = g((y3(i)+0.5*h*k_11));
k_3 = f(y(i)+0.5*h*k_2, y3(i) +0.5*h*k_22);
k_33 = g((y3(i)+0.5*h*k_22));
k_4 = f(y(i)+h*k_3, y3(i) +h*k_33);
k_44 = g((y3(i)+h*k_33));
y3(i+1) = y3(i) + (1/6)*(k_1+2*k_2+2*k_3+k_4)*h ;
y(i+1) = y(i) + (1/6)*(k_11+2*k_22+2*k_33+k_44)*h ;
end
Answer_Matrix = [x' y];
% solution of DE is exp(-2x) and is plotted as reference
plot(x,y,x,exp(-2*x))
As mentioned before, you can also solve this without the use of functions:
h = .1;
x = 0:h:1;
N = length(x);
% allocate memory
y = zeros(N,1);
z = zeros(N,1);
% starting values
y(1) = 1;
z(1) = -2;
for i=1:N-1
ky1 = z(i);
kz1 = -z(i) + 2*y(i);
ky2 = z(i) + h/2*kz1;
kz2 = -z(i) - h/2*kz1 + 2*y(i) + 2*h/2*ky1;
ky3 = z(i) + h/2*kz2;
kz3 = -z(i) - h/2*kz2 + 2*y(i) + 2*h/2*ky2;
ky4 = z(i) + h*kz3;
kz4 = -z(i) - h*kz3 + 2*y(i) + 2*h*ky3;
y(i+1) = y(i) + h/6*(ky1 + 2*ky2 + 2*ky3 + ky4);
z(i+1) = z(i) + h/6*(kz1 + 2*kz2 + 2*kz3 + kz4);
end
% exp(-2*x) is solution of DE and is plotted as reference
plot(x,y,x,exp(-2*x))

Error in evaluating a function

EDIT: The code that I have pasted is too long. Basicaly I dont know how to work with the second code, If I know how calculate alpha from the second code I think my problem will be solved. I have tried a lot of input arguments for the second code but it does not work!
I have written following code to solve a convex optimization problem using Gradient descend method:
function [optimumX,optimumF,counter,gNorm,dx] = grad_descent()
x0 = [3 3]';%'//
terminationThreshold = 1e-6;
maxIterations = 100;
dxMin = 1e-6;
gNorm = inf; x = x0; counter = 0; dx = inf;
% ************************************
f = #(x1,x2) 4.*x1.^2 + 2.*x1.*x2 +8.*x2.^2 + 10.*x1 + x2;
%alpha = 0.01;
% ************************************
figure(1); clf; ezcontour(f,[-5 5 -5 5]); axis equal; hold on
f2 = #(x) f(x(1),x(2));
% gradient descent algorithm:
while and(gNorm >= terminationThreshold, and(counter <= maxIterations, dx >= dxMin))
g = grad(x);
gNorm = norm(g);
alpha = linesearch_strongwolfe(f,-g, x0, 1);
xNew = x - alpha * g;
% check step
if ~isfinite(xNew)
display(['Number of iterations: ' num2str(counter)])
error('x is inf or NaN')
end
% **************************************
plot([x(1) xNew(1)],[x(2) xNew(2)],'ko-')
refresh
% **************************************
counter = counter + 1;
dx = norm(xNew-x);
x = xNew;
end
optimumX = x;
optimumF = f2(optimumX);
counter = counter - 1;
% define the gradient of the objective
function g = grad(x)
g = [(8*x(1) + 2*x(2) +10)
(2*x(1) + 16*x(2) + 1)];
end
end
As you can see, I have commented out the alpha = 0.01; part. I want to calculate alpha via an other code. Here is the code (This code is not mine)
function alphas = linesearch_strongwolfe(f,d,x0,alpham)
alpha0 = 0;
alphap = alpha0;
c1 = 1e-4;
c2 = 0.5;
alphax = alpham*rand(1);
[fx0,gx0] = feval(f,x0,d);
fxp = fx0;
gxp = gx0;
i=1;
while (1 ~= 2)
xx = x0 + alphax*d;
[fxx,gxx] = feval(f,xx,d);
if (fxx > fx0 + c1*alphax*gx0) | ((i > 1) & (fxx >= fxp)),
alphas = zoom(f,x0,d,alphap,alphax);
return;
end
if abs(gxx) <= -c2*gx0,
alphas = alphax;
return;
end
if gxx >= 0,
alphas = zoom(f,x0,d,alphax,alphap);
return;
end
alphap = alphax;
fxp = fxx;
gxp = gxx;
alphax = alphax + (alpham-alphax)*rand(1);
i = i+1;
end
function alphas = zoom(f,x0,d,alphal,alphah)
c1 = 1e-4;
c2 = 0.5;
[fx0,gx0] = feval(f,x0,d);
while (1~=2),
alphax = 1/2*(alphal+alphah);
xx = x0 + alphax*d;
[fxx,gxx] = feval(f,xx,d);
xl = x0 + alphal*d;
fxl = feval(f,xl,d);
if ((fxx > fx0 + c1*alphax*gx0) | (fxx >= fxl)),
alphah = alphax;
else
if abs(gxx) <= -c2*gx0,
alphas = alphax;
return;
end
if gxx*(alphah-alphal) >= 0,
alphah = alphal;
end
alphal = alphax;
end
end
But I get this error:
Error in linesearch_strongwolfe (line 11) [fx0,gx0] = feval(f,x0,d);
As you can see I have written the f function and its gradient manually.
linesearch_strongwolfe(f,d,x0,alpham) takes a function f, Gradient of f, a vector x0 and a constant alpham. is there anything wrong with my declaration of f? This code works just fine if I put back alpha = 0.01;
As I see it:
x0 = [3; 3]; %2-element column vector
g = grad(x0); %2-element column vector
f = #(x1,x2) 4.*x1.^2 + 2.*x1.*x2 +8.*x2.^2 + 10.*x1 + x2;
linesearch_strongwolfe(f,-g, x0, 1); %passing variables
inside the function:
[fx0,gx0] = feval(f,x0,-g); %variable names substituted with input vars
This will in effect call
[fx0,gx0] = f(x0,-g);
but f(x0,-g) is a single 2-element column vector with these inputs. Assingning the output to two variables will not work.
You either have to define f as a proper named function (just like grad) to output 2 variables (one for each component), or edit the code of linesearch_strongwolfe to return a single variable, then slice that into 2 separate variables yourself afterwards.
If you experience a very rare kind of laziness and don't want to define a named function, you can still use an anonymous function at the cost of duplicating code for the two components (at least I couldn't come up with a cleaner solution):
f = #(x1,x2) deal(4.*x1(1)^2 + 2.*x1(1)*x2(1) +8.*x2(1)^2 + 10.*x1(1) + x2(1),...
4.*x1(2)^2 + 2.*x1(2)*x2(2) +8.*x2(2)^2 + 10.*x1(2) + x2(2));
[fx0,gx0] = f(x0,-g); %now works fine
as long as you always have 2 output variables. Note that this is more like a proof of concept, since this is ugly, inefficient, and very susceptible to typos.

Matlab - Unexpected Results from Differential Equation Solver Ode45

I am trying to solve a differential equation with the ode solver ode45 with MATLAB. I have tried using it with other simpler functions and let it plot the function. They all look correct, but when I plug in the function that I need to solve, it fails. The plot starts off at y(0) = 1 but starts decreasing at some point when it should have been an increasing function all the way up to its critical point.
function [xpts,soln] = diffsolver(p1x,p2x,p3x,p1rr,y0)
syms x y
yp = matlabFunction((p3x/p1x) - (p2x/p1x) * y);
[xpts,soln] = ode45(yp,[0 p1rr],y0);
p1x, p2x, and p3x are polynomials and they are passed into this diffsolver function as parameters.
p1rr here is the critical point. The function should diverge after the critical point, so i want to integrate it up to that point.
EDIT: Here is the code that I have before using diffsolver, the above function. I do pade approximation to find the polynomials p1, p2, and p3. Then i find the critical point, which is the root of p1 that is closest to the target (target is specified by user).
I check if the critical point is empty (sometimes there might not be a critical point in some functions). If its not empty, then it uses the above function to solve the differential equation. Then it plots the x- and y- points returned from the above function basically.
function error = padeapprox(m,n,j)
global f df p1 p2 p3 N target
error = 0;
size = m + n + j + 2;
A = zeros(size,size);
for i = 1:m
A((i + 1):size,i) = df(1:(size - i));
end
for i = (m + 1):(m + n + 1)
A((i - m):size,i) = f(1:(size + 1 - i + m));
end
for i = (m + n + 2):size
A(i - (m + n + 1),i) = -1;
end
if det(A) == 0
error = 1;
fprintf('Warning: Matrix is singular.\n');
end
V = -A\df(1:size);
p1 = [1];
for i = 1:m
p1 = [p1; V(i)];
end
p2 = [];
for i = (m + 1):(m + n + 1)
p2 = [p2; V(i)];
end
p3 = [];
for i = (m + n + 2):size
p3 = [p3; V(i)];
end
fx = poly2sym(f(end:-1:1));
dfx = poly2sym(df(end:-1:1));
p1x = poly2sym(p1(end:-1:1));
p2x = poly2sym(p2(end:-1:1));
p3x = poly2sym(p3(end:-1:1));
p3fullx = p1x * dfx + p2x * fx;
p3full = sym2poly(p3fullx); p3full = p3full(end:-1:1);
p1r = roots(p1(end:-1:1));
p1rr = findroots(p1r,target); % findroots eliminates unreal roots and chooses the one closest to the target
if ~isempty(p1rr)
[xpts,soln] = diffsolver(p1x,p2x,p3fullx,p1rr,f(1));
if rcond(A) >= 1e-10
plot(xpts,soln); axis([0 p1rr 0 5]); hold all
end
end
I saw some examples using another function to generate the differential equation but i've tried using the matlabFunction() method with other simpler functions and it seems like it works. Its just that when I try to solve this function, it fails. The solved values start becoming negative when they should all be positive.
I also tried using another solver, dsolve(). But it gives me an implicit solution all the time...
Does anyone have an idea why this is happening? Any advice is appreciated. Thank you!
Since your code seems to work for simpler functions, you could try to increase the accuracy options of the ode45 solver.
This can be achieved by using odeset:
options = odeset('RelTol',1e-10,'AbsTol',1e-10);
[T,Y] = ode45(#function,[tspan],[y0],options);

Fourth-order Runge–Kutta method (RK4) collapses after a few iterations

I'm trying to solve:
x' = 60*x - 0.2*x*y;
y' = 0.01*x*y - 100* y;
using the fourth-order Runge-Kutta algorithm.
Starting points: x(0) = 8000, y(0) = 300 range: [0,15]
Here's the complete function:
function [xx yy time r] = rk4_m(x,y,step)
A = 0;
B = 15;
h = step;
iteration=0;
t = tic;
xh2 = x;
yh2 = y;
rr = zeros(floor(15/step)-1,1);
xx = zeros(floor(15/step)-1,1);
yy = zeros(floor(15/step)-1,1);
AA = zeros(1, floor(15/step)-1);
while( A < B)
A = A+h;
iteration = iteration + 1;
xx(iteration) = x;
yy(iteration) = y;
AA(iteration) = A;
[x y] = rkstep(x,y,h);
for h2=0:1
[xh2 yh2] = rkstep(xh2,yh2,h/2);
end
r(iteration)=abs(y-yh2);
end
time = toc(t);
xlabel('Range');
ylabel('Value');
hold on
plot(AA,xx,'b');
plot(AA,yy,'g');
plot(AA,r,'r');
fprintf('Solution:\n');
fprintf('x: %f\n', x);
fprintf('y: %f\n', y);
fprintf('A: %f\n', A);
fprintf('Time: %f\n', time);
end
function [xnext, ynext] = rkstep(xcur, ycur, h)
kx1 = f_prim_x(xcur,ycur);
ky1 = f_prim_y(xcur,ycur);
kx2 = f_prim_x(xcur+0.5*h,ycur+0.5*h*kx1);
kx3 = f_prim_x(xcur+0.5*h,ycur+0.5*h*kx2);
kx4 = f_prim_x(xcur+h,ycur+h*kx3);
ky2 = f_prim_y(xcur+0.5*h*ky1,ycur+0.5*h);
ky3 = f_prim_y(xcur+0.5*h*ky2,ycur+0.5*h);
ky4 = f_prim_y(xcur+h*ky2,ycur+h);
xnext = xcur + (1/6)*h*(kx1 + 2*kx2 + 2*kx3 + kx4);
ynext = ycur + (1/6)*h*(ky1 + 2*ky2 + 2*ky3 + ky4);
end
function [fx] = f_prim_x(x,y)
fx = 60*x - 0.2*x*y;
end
function [fy] = f_prim_y(x,y)
fy = 0.01*x*y - 100*y;
end
And I'm running it by executing: [xx yy time] = rk4_m(8000,300,10)
The problem is that everything collapses after 2-3 iterations returning useless results. What am I doing wrong? Or is just this method not appropriate for this kind equation?
The semicolons are intentionally omitted.
Looks like I didn't pay attention to actual h size. It works now! Thanks!
Looks like some form of the Lotka-Volterra equation?
I'm not sure if if your initial condition is [300;8000] or [8000;300] (you specify it both ways above), but regardless, you have an oscillatory system that you're trying to integrate with a large fixed time step that is (much) greater than the period of oscillation. This is why your error explodes. If you try increasing n (say, 1e6), you'll find that eventually you'll get a stable solution (assuming that your Runge-Kutta implementation is otherwise correct).
Is there a reason why you're not using Matlab's builtin ODE solvers, e.g. ode45 or ode15s?
function ode45demo
[t,y]=odeode45(#f,[0 15],[300;8000]);
figure;
plot(t,y);
function ydot=f(t,y)
ydot(1,1) = 60*y(1) - 0.2*y(1)*y(2);
ydot(2,1) = 0.01*y(1)*y(2) - 100*y(2);
You'll find that adaptive step size solvers are much more efficient for these types of oscillatory problems. Because your system has such a high frequency and seems rather stiff, I suggest that you also look at what ode15s gives and/or adjust the 'AbsTol' and 'RelTol' options with odeset.
The immediate problem is that the RK4 code was not completely evolved from the scalar case to the case of two coupled equations. Note that there is no time parameter in the derivative funtions. x and y are both dependent variables and thus get the slope update defined by the derivative functions in every step. Then xcur gets the kx updates and ycur gets the ky updates.
function [xnext, ynext] = rkstep(xcur, ycur, h)
kx1 = f_prim_x(xcur,ycur);
ky1 = f_prim_y(xcur,ycur);
kx2 = f_prim_x(xcur+0.5*h*kx1,ycur+0.5*h*ky1);
ky2 = f_prim_y(xcur+0.5*h*kx1,ycur+0.5*h*ky1);
kx3 = f_prim_x(xcur+0.5*h*kx2,ycur+0.5*h*ky2);
ky3 = f_prim_y(xcur+0.5*h*kx2,ycur+0.5*h*ky2);
kx4 = f_prim_x(xcur+h*kx3,ycur+h*ky3);
ky4 = f_prim_y(xcur+h*kx3,ycur+h*ky3);
xnext = xcur + (1/6)*h*(kx1 + 2*kx2 + 2*kx3 + kx4);
ynext = ycur + (1/6)*h*(ky1 + 2*ky2 + 2*ky3 + ky4);
end

Matlab Differentiation

I need to write a for loop in matlab to solve a derivative using the forward difference method. The function to derive is 10+15x+20x^2 from 0 to 10 using steps of 0.25. I have tried using
h=.25;
x=[0:h:10];
y = 10+15*x+20*x.^2;
y(1) = 45; size(x)
for i=2:47,
y(i) = y(i-1) + h*(15+40*x);
end
I'd do like this, as a start,
h=.25;
x=[0:h:10];
y = 10+15*x+20*x.^2;
diff(y)./diff(x)
or, as alternative,
syms x;
y = 20.*x.^2 + 15.*x + 10;
dy = diff(y,1);
h=.25;
xx=[0:h:10];
res = subs(dy,xx);