What does CoAP Max transaction in Contiki means? - rest

I didn't get whether Max transactions refer to client side or server side of CoAP. For instance, if COAP_MAX_OPEN_TRANSACTIONS is 4. Does it mean that CoAP Client can send 4 parallel request to different servers or it means that CoAP Server can process max 4 requests in parallel.
Because from the code I see that it initiates a blocking request from the client side which will not allow looping for another transaction.
So, need clarification here. If multiple CoAP transactions possible from client side then please mention how. Thank you.

According to paper dunkels.com/adam/kovatsch11low-power.pdf
Section III-F CoAP Clients provide a blocking function call implemented with protothreads to issue a request. This linear programming model can also hide blockwise transfers, as it continues first when all data were received. So based on this I am guessing client can generate one transaction at a time and blocks to wait for ack (or timeout).
Here is code reference https://github.com/contiki-os/contiki/blob/master/apps/er-coap/er-coap-engine.c#L370.
Contrarily, Server can respond to multiple transactions simultaneously because there are transactions which wait for response (from say sensors) and need to save state. This is my understanding of the question posted. If I am wrong then please correct.

According to links:
https://github.com/contiki-os/contiki/blob/bc2e445817aa546c0bb93a9900093ec276005e2a/apps/er-coap/er-coap-conf.h#L51
https://github.com/contiki-ng/contiki-ng/wiki/Documentation:-CoAP#configuration
I guess it's just a max number of confirmable requests (which have not yet received an ACK) to be stored simultaneously for retransmission.
And it used for reserving memory for the max number of those requests:
https://github.com/contiki-os/contiki/blob/3f4436bac9a9f6da0df188372d4374693eab8a52/apps/er-coap/er-coap-transactions.c#L57
MEMB(transactions_memb, coap_transaction_t, COAP_MAX_OPEN_TRANSACTIONS);

Related

Ajax polling vs SSE (performance on server side)

I'm curious about if there is some type of standard limit on when is better to use Ajax Polling instead of SSE, from a server side viewpoint.
1 request every second: I'm pretty sure is better SSE
1 request per minute: I'm pretty sure is better Ajax
But what about 1 request every 5 seconds? How can we calculate where is the limit frequency for Ajax or SSE?
No way is 1 request per minute always better for Ajax, so that assumption is flawed from the start. Any kind of frequent polling is nearly always a costly choice. It seems from our previous conversation in comments of another question that you start with a belief that an open TCP socket (whether SSE connection or webSocket connection) is somehow costly to server performance. An idle TCP connection takes zero CPU (maybe every once in a long while, a keep alive might be sent, but other than that, an idle socket does not use CPU). It does use a bit of server memory to handle the socket descriptor, but a highly tuned server can have 1,000,000 open sockets at once. So, your CPU usage is going to be more about how many connections are being established and what are they asking the server to do every time they are established than it is about how many open (and mostly idle) connections there are.
Remember, every http connection has to create a TCP socket (which is roundtrips between client/server), then send the http request, then get the http response, then close the socket. That's a lot of roundtrips of data to do every minute. If the connection is https, it's even more work and roundtrips to establish the connection because of the crypto layer and endpoint certification. So doing all that every minute for hundreds of thousands of clients seems like a massive waste of resources and bandwidth when you could create one SSE connection and the client just listen for data to stream from the server over that connection.
As I said in our earlier comment exchange on a different question, these types of questions are not really answerable in the abstract. You have to have specific requirements of both client and server and a specific understanding of the data being delivered and how urgent it is on the client and therefore a specific polling interval and a specific scale in order to begin to do some calculations or test harnesses to evaluate which might be the more desirable way to do things. There are simply too many variables to come up with a purely hypothetical answer. You have to define a scenario and then analyze different implementations for that specific scenario.
Number of requests per second is only one of many possible variables. For example, if most the time you poll there's actually nothing new, then that gives even more of an advantage to the SSE case because it would have nothing to do at all (zero load on the server other than a little bit of memory used for an open socket most of the time) whereas the polling creates continual load, even when nothing to do.
The #1 advantage to server push (whether implement with SSE or webSocket) is that the server only has to do anything with the client when there is actually pertinent data to send to that specific client. All the rest of the time, the socket is just sitting there idle (perhaps occasionally on a long interval, sending a keep-alive).
The #1 disadvantage to polling is that there may be lots of times that the client is polling the server and the server has to expend resources to deal with the polling request only to inform that client that it has nothing new.
How can we calculate where is the limit frequency for Ajax or SSE?
It's a pretty complicated process. Lots of variables in a specific scenario need to be defined. It's not as simple as just requests/sec. Then, you have to decide what you're attempting to measure or evaluate and at what scale? "Server performance" is the only thing you mention, but that has to be completely defined and different factors such as CPU usage and memory usage have to be weighted into whatever you're measuring or calculating. Then, you may even need to run some test harnesses if the calculations don't yield an obvious answer or if the decision is so critical that you want to verify your calculations with real metrics.
It sounds like you're looking for an answer like "at greater than x requests/min, you should use polling instead of SSE" and I don't think there is an answer that simple. It depends upon far more things than requests/min or requests/sec.
"Polling" incurs overhead on all parties. If you can avoid it, don't poll.
If SSE is an option, it might be a good choice. "It depends".
Q: What (if any) kind of "event(s)" will your app need to handle?

maximum number if requests per TCP connection

I am acting as server which receives multiple requests from client in socket and handles in a thread.
Should i set any parameter in TCP level to set maximum number of requests a connection can handle simultaneously?
because in my server side ,if processing the request is slow i observe that other requests are queued up (client says request has been sent but i receive it late)
Kindly guide me
If it takes a long time to do the work and you want to handle multiple connections simultaneously, you have to change how you do things.
If you are actively using a lot of CPU during processing a long request, you'll need multiple threads. That's the only way to actually get more CPU time / second -- assuming you have multiple cores available.
If you are waiting on things like file IO, then you can instead use asynchronous processing to handle the requests on a single thread, but just handle a little piece at a time.
Setting a maximum number of TCP connections won't help you handle more processes more quickly. It will just reject connections and not even allow a first-come first-served type of behavior - it will just be random if a specific client ever gets through or not.

Netty 4.0 SO_Keeplive one connection send many request to server How to process request concurrently

one connection send many request to server
How to process request concurrently.
Please use a simple example like timeserver or echoserver in netty.io
to illustrate the operation.
One way I could find out is to create a separate threaded handler that will be called as in a producer/consumer way.
The producer will be your "network" handler, giving message to the consumers, therefore not waiting for any wanswear and being able then to proceed with the next request.
The consumer will be your "business" handler, one per connection but possibly multi-threaded, consuming with multiple instances the messages and being able to answer using the Netty's context from the connection from which it is attached.
Another option for the consumer would be to have only one handler, still multi-threaded, but then message will come in with the original Netty's Context such that it can answear to the client, whatever the connection attached.
But the difficulties will come soon:
How to deal with an answear among several requests on client side: let say the client sends 3 requests A, B and C and the answears will come back, due to speed of the Business handler, as C, A, B... You have to deal with it, and knowing for which request the answer is.
You have to ensure all the ways the context given in parameter is still valid (channel active), if you don't want to have too many errors.
Perhaps the best way would be to however handle your request in order (as Netty does), and keep the answear's action as quick as possible.

How to manage read / write buffers in a clients / server architecture

I would like to know how to manage read and write buffers in a many clients / one server architecture.
My server is asynchronous.
My exact questions are:
Do I need to have one read buffer per client connected, or one for the server globally ? Why ? (to avoid data crushing if multiple clients write to the server simultaneously for example).
Same question with write buffer.
If my server wasn't asynchronous, would it change any of the answers ?
Thank you in advance for your responses,
Flo
Do I need to have one read buffer per client connected, or one for the server globally?
One per client, because you will get partial reads, and you need to keep reading to assemble entire messages: you want all that data in one place, adjacent.
Same question with write buffer.
One per client, because you can get short writes.
If my server wasn't asynchronous, would it change any of the answers?
No.

Implement a good performing "to-send" queue with TCP

In order not to flood the remote endpoint my server app will have to implement a "to-send" queue of packets I wish to send.
I use Windows Winsock, I/O Completion Ports.
So, I know that when my code calls "socket->send(.....)" my custom "send()" function will check to see if a data is already "on the wire" (towards that socket).
If a data is indeed on the wire it will simply queue the data to be sent later.
If no data is on the wire it will call WSASend() to really send the data.
So far everything is nice.
Now, the size of the data I'm going to send is unpredictable, so I break it into smaller chunks (say 64 bytes) in order not to waste memory for small packets, and queue/send these small chunks.
When a "write-done" completion status is given by IOCP regarding the packet I've sent, I send the next packet in the queue.
That's the problem; The speed is awfully low.
I'm actually getting, and it's on a local connection (127.0.0.1) speeds like 200kb/s.
So, I know I'll have to call WSASend() with seveal chunks (array of WSABUF objects), and that will give much better performance, but, how much will I send at once?
Is there a recommended size of bytes? I'm sure the answer is specific to my needs, yet I'm also sure there is some "general" point to start with.
Is there any other, better, way to do this?
Of course you only need to resort to providing your own queue if you are trying to send data faster than the peer can process it (either due to link speed or the speed that the peer can read and process the data). Then you only need to resort to your own data queue if you want to control the amount of system resources being used. If you only have a few connections then it is likely that this is all unnecessary, if you have 1000s then it's something that you need to be concerned about. The main thing to realise here is that if you use ANY of the asynchronous network send APIs on Windows, managed or unmanaged, then you are handing control over the lifetime of your send buffers to the receiving application and the network. See here for more details.
And once you have decided that you DO need to bother with this you then don't always need to bother, if the peer can process the data faster than you can produce it then there's no need to slow things down by queuing on the sender. You'll see that you need to queue data because your write completions will begin to take longer as the overlapped writes that you issue cannot complete due to the TCP stack being unable to send any more data due to flow control issues (see http://www.tcpipguide.com/free/t_TCPWindowSizeAdjustmentandFlowControl.htm). At this point you are potentially using an unconstrained amount of limited system resources (both non-paged pool memory and the number of memory pages that can be locked are limited and (as far as I know) both are used by pending socket writes)...
Anyway, enough of that... I assume you already have achieved good throughput before you added your send queue? To achieve maximum performance you probably need to set the TCP window size to something larger than the default (see http://msdn.microsoft.com/en-us/library/ms819736.aspx) and post multiple overlapped writes on the connection.
Assuming you already HAVE good throughput then you need to allow a number of pending overlapped writes before you start queuing, this maximises the amount of data that is ready to be sent. Once you have your magic number of pending writes outstanding you can start to queue the data and then send it based on subsequent completions. Of course, as soon as you have ANY data queued all further data must be queued. Make the number configurable and profile to see what works best as a trade off between speed and resources used (i.e. number of concurrent connections that you can maintain).
I tend to queue the whole data buffer that is due to be sent as a single entry in a queue of data buffers, since you're using IOCP it's likely that these data buffers are already reference counted to make it easy to release then when the completions occur and not before and so the queuing process is made simpler as you simply hold a reference to the send buffer whilst the data is in the queue and release it once you've issued a send.
Personally I wouldn't optimise by using scatter/gather writes with multiple WSABUFs until you have the base working and you know that doing so actually improves performance, I doubt that it will if you have enough data already pending; but as always, measure and you will know.
64 bytes is too small.
You may have already seen this but I wrote about the subject here: http://www.lenholgate.com/blog/2008/03/bug-in-timer-queue-code.html though it's possibly too vague for you.