Is real number natural? - numbers

I have 2 real numbers ( e.g. a , b). Is there any way to know whether is their division's result natural number?
I have tried
a mod b {to check if the result is 0}
but "mod" doesn't work for real numbers.
Also
a/b-trunc(a/b) {but sometimes the answer isn't 0}
I'm beginner, please, whether is there any other way, let me know.

Using Frac could be one idea as #Sertac mentions. But since binary floating point does not represent all real numbers, there could be cases where the fraction could end up close to zero (or one for that matter) as well.
Here is a simple routine that avoids testing for both close to one or zero:
function IsNaturalNumber( value : Double) : Boolean;
const
epsilon : Double = 1E-12;
begin
IsNaturalNumber := Abs(value - Round(value)) < epsilon;
end;
var
A,B : Double;
begin
A := 3.3;
B := 1.1;
WriteLn(IsNaturalNumber(A/B)); // Writes TRUE
end.
The function tests if the absolute difference between the value and the value rounded to nearest integer is smaller than a reasonable limit.
Note that there is no absolute certainty. That would require using a decimal floating point arithmetic library.
I will leave it up to the interested reader to implement the exclusion of integer numbers that is outside the range of the natural numbers, whether that is all negative numbers including zero or not.
If the values to test are larger than the upper range of the Round() function, use an equivalent floating point function. In Delphi that is Math.RoundTo(value,0).

Related

SCALA: Function for Square root of BigInt

I searched internet for a function to find exact square root of BigInt using scala programming language. I didn't get one, But saw one Java Program and I converted that function into Scala version. It is working but I am not sure, whether it can handle very large BigInt. But it returns BigInt only. Not BigDecimal as Square Root. It shows there is some bit manipulation done in the code with some hard coding of numbers like shiftRight(5), BigInt("8") and shiftRight(1). I can understand the logic clearly, But not the hard coding of these bitshift numbers and the number 8. May be these bitshift functions are not available in scala, and thats why it is needed to convert to java BigInteger at few places. These hard coded numbers may impact the precision of the result.I just changed the java code into scala code just copying the exact algorithm. And here is the code I have written in scala:
def sqt(n:BigInt):BigInt = {
var a = BigInt(1)
var b = (n>>5)+BigInt(8)
while((b-a) >= 0) {
var mid:BigInt = (a+b)>>1
if(mid*mid-n> 0) b = mid-1
else a = mid+1
}
a-1
}
My Points are:
Can't we return a BigDecimal instead of BigInt? How can we do that?
How these hardcoded numbers shiftRight(5), shiftRight(1) and 8 are related
to precision of the result.
I tested for one number in scala REPL: The function sqt is giving exact square root of the squared number. but not for the actual number as below:
scala> sqt(BigInt("19928937494873929279191794189"))
res9: BigInt = 141169888768369
scala> res9*res9
res10: scala.math.BigInt = 19928937494873675935734920161
scala> sqt(res10)
res11: BigInt = 141169888768369
scala>
I understand shiftRight(5) means divide by 2^5 ie.by 32 in decimal and so on..but why 8 is added here after shift operation? why exactly 5 shifts? as a first guess?
Your question 1 and question 3 are actually the same question.
How [do] these bitshifts impact [the] precision of the result?
They don't.
How [are] these hardcoded numbers ... related to precision of the result?
They aren't.
There are many different methods/algorithms for estimating/calculating the square root of a number (as can be seen here). The algorithm you've posted appears to be a pretty straight forward binary search.
Pick a number a guaranteed to be smaller than the target (square root of n).
Pick a number b guaranteed to be larger than the target (square root of n).
Calculate mid, the whole number mid-point between a and b.
If mid is larger than (or equal to) the target then move b to mid (-1 because we know it's too large).
If mid is smaller than the target then move a to mid (+1 because we know it's too small).
Repeat 3,4,5 until a is no longer less than b.
Return a-1 as the square root of n rounded down to a whole number.
The bitshifts and hardcoded numbers are used in selecting the initial value of b. But b only has be greater than the target. We could have just done var b = n. Why all the bother?
It's all about efficiency. The closer b is to the target, the fewer iterations are needed to find the result. Why add 8 after the shift? Because 31>>5 is zero, which is not greater than the target. The author chose (n>>5)+8 but he/she might have chosen (n>>7)+12. There are trade-offs.
Can't we return a BigDecimal instead of BigInt? How can we do that?
Here's one way to do that.
def sqt(n:BigInt) :BigDecimal = {
val d = BigDecimal(n)
var a = BigDecimal(1.0)
var b = d
while(b-a >= 0) {
val mid = (a+b)/2
if (mid*mid-d > 0) b = mid-0.0001 //adjust down
else a = mid+0.0001 //adjust up
}
b
}
There are better algorithms for calculating floating-point square root values. In this case you get better precision by using smaller adjustment values but the efficiency gets much worse.
Can't we return a BigDecimal instead of BigInt? How can we do that?
This makes no sense if you want exact roots: if a BigInt's square root can be represented exactly by a BigDecimal, it can be represented by a BigInt. If you don't want exact roots, you'll need to specify precision and modify the algorithm (and for most cases, Double will be good enough and much much much faster than BigDecimal).
I understand shiftRight(5) means divide by 2^5 ie.by 32 in decimal and so on..but why 8 is added here after shift operation? why exactly 5 shifts? as a first guess?
These aren't the only options. The point is that for every positive n, n/32 + 8 >= sqrt(n) (where sqrt is the mathematical square root). This is easiest to show by a bit of calculus (or just by building a graph of the difference). So at the start we know a <= sqrt(n) <= b (unless n == 0 which can be checked separately), and you can verify this remains true on each step.

How can I extract a specific bit from a 16-bit register using math ONLY?

I have a 16-bit WORD and I want to read the status of a specific bit or several bits.
I've tried a method that divides the word by the bit that I want, converts the result to two values - an integer and to a real, and compares the two. if they are not equal, then it it equates to false. This appears to only work if i am looking for a bit that the last 'TRUE' bit in the word. If there are any successive TRUE bits, it fails. Perhaps I just haven't done it right. I don't have the ability to use code, just basic math, boolean operations, and type conversion. Any ideas? I hope this isn't a dumb question but i have a feeling it is.
eg:
WORD 0010000100100100 = 9348
I want to know the value of bit 2. how can i determine it from 9348?
There are many ways, depending on what operations you can use. It appears you don't have much to choose from. But this should work, using just integer division and multiplication, and a test for equality.
(psuedocode):
x = 9348 (binary 0010000100100100, bit 0 = 0, bit 1 = 0, bit 2 = 1, ...)
x = x / 4 (now x is 1000010010010000
y = (x / 2) * 2 (y is 0000010010010000)
if (x == y) {
(bit 2 must have been 0)
} else {
(bit 2 must have been 1)
}
Every time you divide by 2, you move the bits to the left one position (in your big endian representation). Every time you multiply by 2, you move the bits to the right one position. Odd numbers will have 1 in the least significant position. Even numbers will have 0 in the least significant position. If you divide an odd number by 2 in integer math, and then multiply by 2, you loose the odd bit if there was one. So the idea above is to first move the bit you want to know about into the least significant position. Then, divide by 2 and then multiply by two. If the result is the same as what you had before, then there must have been a 0 in the bit you care about. If the result is not the same as what you had before, then there must have been a 1 in the bit you care about.
Having explained the idea, we can simplify to
((x / 8) * 2) <> (x / 4)
which will resolve to true if the bit was set, and false if the bit was not set.
AND the word with a mask [1].
In your example, you're interested in the second bit, so the mask (in binary) is
00000010. (Which is 2 in decimal.)
In binary, your word 9348 is 0010010010000100 [2]
0010010010000100 (your word)
AND 0000000000000010 (mask)
----------------
0000000000000000 (result of ANDing your word and the mask)
Because the value is equal to zero, the bit is not set. If it were different to zero, the bit was set.
This technique works for extracting one bit at a time. You can however use it repeatedly with different masks if you're interested in extracting multiple bits.
[1] For more information on masking techniques see http://en.wikipedia.org/wiki/Mask_(computing)
[2] See http://www.binaryhexconverter.com/decimal-to-binary-converter
The nth bit is equal to the word divided by 2^n mod 2
I think you'll have to test each bit, 0 through 15 inclusive.
You could try 9348 AND 4 (equivalent of 1<<2 - index of the bit you wanted)
9348 AND 4
should give 4 if bit is set, 0 if not.
So here is what I have come up with: 3 solutions. One is Hatchet's as proposed above, and his answer helped me immensely with actually understanding HOW this works, which is of utmost importance to me! The proposed AND masking solutions could have worked if my system supports bitwise operators, but it apparently does not.
Original technique:
( ( ( INT ( TAG / BIT ) ) / 2 ) - ( INT ( ( INT ( TAG / BIT ) ) / 2 ) ) <> 0 )
Explanation:
in the first part of the equation, integer division is performed on TAG/BIT, then REAL division by 2. In the second part, integer division is performed TAG/BIT, then integer division again by 2. The difference between these two results is compared to 0. If the difference is not 0, then the formula resolves to TRUE, which means the specified bit is also TRUE.
eg: 9348/4 = 2337 w/ integer division. Then 2337/2 = 1168.5 w/ REAL division but 1168 w/ integer division. 1168.5-1168 <> 0, so the result is TRUE.
My modified technique:
( INT ( TAG / BIT ) / 2 ) <> ( INT ( INT ( TAG / BIT ) / 2 ) )
Explanation:
effectively the same as above, but instead of subtracting the two results and comparing them to 0, I am just comparing the two results themselves. If they are not equal, the formula resolves to TRUE, which means the specified bit is also TRUE.
eg: 9348/4 = 2337 w/ integer division. Then 2337/2 = 1168.5 w/ REAL division but 1168 w/ integer division. 1168.5 <> 1168, so the result is TRUE.
Hatchet's technique as it applies to my system:
( INT ( TAG / BIT )) <> ( INT ( INT ( TAG / BIT ) / 2 ) * 2 )
Explanation:
in the first part of the equation, integer division is performed on TAG/BIT. In the second part, integer division is performed TAG/BIT, then integer division again by 2, then multiplication by 2. The two results are compared. If they are not equal, the formula resolves to TRUE, which means the specified bit is also TRUE.
eg: 9348/4 = 2337. Then 2337/2 = 1168 w/ integer division. Then 1168x2=2336. 2337 <> 2336 so the result is TRUE. As Hatchet stated, this method 'drops the odd bit'.
Note - 9348/4 = 2337 w/ both REAL and integer division, but it is important that these parts of the formula use integer division and not REAL division (12164/32 = 380 w/ integer division and 380.125 w/ REAL division)
I feel it important to note for any future readers that the BIT value in the equations above is not the bit number, but the actual value of the resulting decimal if the bit in the desired position was the only TRUE bit in the binary string (bit 2 = 4 (2^2), bit 6 = 64 (2^6))
This explanation may be a bit too verbatim for some, but may be perfect for others :)
Please feel free to comment/critique/correct me if necessary!
I just needed to resolve an integer status code to a bit state in order to interface with some hardware. Here's a method that works for me:
private bool resolveBitState(int value, int bitNumber)
{
return (value & (1 << (bitNumber - 1))) != 0;
}
I like it, because it's non-iterative, requires no cast operations and essentially translates directly to machine code operations like Shift, And and Comparison, which probably means it's really optimal.
To explain in a little more detail, I'm comparing the bitwise value to a mask for the bit I am interested in (value & mask) using an AND operation. If the bitwise AND operation result is zero, then the bit is not set (return false). If the AND operation result is not zero, then the bit is set (return true). The result of the AND operation is either zero or the value of the bit (1, 2, 4, 8, 16, 32...). Hence the boolean evaluation comparing the AND operation result and 0. The mask is created by taking the number 1 and shifting it left (bit wise), by the appropriate number of binary places (1 << n). The number of places is the number of the bit targeted minus 1. If it's bit #1, I want to shift the 1 left by 0 and if it's #2, I want to shift it left 1 place, etc.
I'm surprised no one rates my solution. It think it's most logical and succinct... and works.

How to get Exponent of Scientific Notation in Matlab

When the numbers are really small, Matlab automatically shows them formatted in Scientific Notation.
Example:
A = rand(3) / 10000000000000000;
A =
1.0e-016 *
0.6340 0.1077 0.6477
0.3012 0.7984 0.0551
0.5830 0.8751 0.9386
Is there some in-built function which returns the exponent? Something like: getExponent(A) = -16?
I know this is sort of a stupid question, but I need to check hundreds of matrices and I can't seem to figure it out.
Thank you for your help.
Basic math can tell you that:
floor(log10(N))
The log base 10 of a number tells you approximately how many digits before the decimal are in that number.
For instance, 99987123459823754 is 9.998E+016
log10(99987123459823754) is 16.9999441, the floor of which is 16 - which can basically tell you "the exponent in scientific notation is 16, very close to being 17".
Floor always rounds down, so you don't need to worry about small exponents:
0.000000000003754 = 3.754E-012
log10(0.000000000003754) = -11.425
floor(log10(0.000000000003754)) = -12
You can use log10(A). The exponent used to print out will be the largest magnitude exponent in A. If you only care about small numbers (< 1), you can use
min(floor(log10(A)))
but if it is possible for them to be large too, you'd want something like:
a = log10(A);
[v i] = max(ceil(abs(a)));
exponent = v * sign(a(i));
this finds the maximum absolute exponent, and returns that. So if A = [1e-6 1e20], it will return 20.
I'm actually not sure quite how Matlab decides what exponent to use when printing out. Obviously, if A is close to 1 (e.g. A = [100, 203]) then it won't use an exponent at all but this solution will return 2. You'd have to play around with it a bit to work out exactly what the rules for printing matrices are.

Algorithm to convert integer (represented as an array) with base n to integer with base m

I have a, very long, integer. The integer is represented by a array of unsigned chars.
Example: the integer 1234 with base 10 is represented in the array as [4,3,2,1], [2,2,3,2] (base 8) and [2,13,4] (base 16)
Now I want to convert my integer with base n to another integer with base m. In my persued for a answer I came accross Wallar's algorithm, originally from here.
from math import *
def baseExpansion(n,c,b):
j = 0
base10 = sum([pow(c,len(n)-k-1)*n[k] for k in range(0,len(n))])
while floor(base10/pow(b,j)) != 0: j = j+1
return [floor(base10/pow(b,j-p)) % b for p in range(1,j+1)]
At first I thought this was my answer but unfortunately it is not. The problem I have is that the algorithm computes the sum. In my case this is a problem because the variable base10 is of type unsigned integer of 32 bits. Therefore when my integer, represented as a array, has more then 10 digits it can not convert the number anymore. Anyone has a solution?
Here's the school-book algorithm for doing what you're trying. You start with a representation for zero and call it a running total. Then, for each digit of the number to be converted, starting with the most significant and going to the least significant, 1) multiply the running total by the base of the source number and 2) add the digit to the running total. Now all you need is algorithms to do the multiplication and addition (and you can actually do both at once). Here's how to do that: 1) set the current digit to a variable, call it "carry", 2) for each digit in your new number, starting with the least significant and going to the most significant: 2a) set carry to the current digit in the new number times the output base plus carry, 2b) set the current digit to carry mod the output base, 2c) set carry to carry divided by the output base. And that should do it. There is an implementation of what you are trying to do somewhere here: http://www.cis.ksu.edu/~howell/calculator/comparison.html

hash function providing unique uint from an integer coordinate pair

The problem in general:
I have a big 2d point space, sparsely populated with dots.
Think of it as a big white canvas sprinkled with black dots.
I have to iterate over and search through these dots a lot.
The Canvas (point space) can be huge, bordering on the limits
of int and its size is unknown before setting points in there.
That brought me to the idea of hashing:
Ideal:
I need a hash function taking a 2D point, returning a unique uint32.
So that no collisions can occur. You can assume that the number of
dots on the Canvas is easily countable by uint32.
IMPORTANT: It is impossible to know the size of the canvas beforehand
(it may even change),
so things like
canvaswidth * y + x
are sadly out of the question.
I also tried a very naive
abs(x) + abs(y)
but that produces too many collisions.
Compromise:
A hash function that provides keys with a very low probability of collision.
Cantor's enumeration of pairs
n = ((x + y)*(x + y + 1)/2) + y
might be interesting, as it's closest to your original canvaswidth * y + x but will work for any x or y. But for a real world int32 hash, rather than a mapping of pairs of integers to integers, you're probably better off with a bit manipulation such as Bob Jenkin's mix and calling that with x,y and a salt.
a hash function that is GUARANTEED collision-free is not a hash function :)
Instead of using a hash function, you could consider using binary space partition trees (BSPs) or XY-trees (closely related).
If you want to hash two uint32's into one uint32, do not use things like Y & 0xFFFF because that discards half of the bits. Do something like
(x * 0x1f1f1f1f) ^ y
(you need to transform one of the variables first to make sure the hash function is not commutative)
Like Emil, but handles 16-bit overflows in x in a way that produces fewer collisions, and takes fewer instructions to compute:
hash = ( y << 16 ) ^ x;
You can recursively divide your XY plane into cells, then divide these cells into sub-cells, etc.
Gustavo Niemeyer invented in 2008 his Geohash geocoding system.
Amazon's open source Geo Library computes the hash for any longitude-latitude coordinate. The resulting Geohash value is a 63 bit number. The probability of collision depends of the hash's resolution: if two objects are closer than the intrinsic resolution, the calculated hash will be identical.
Read more:
https://en.wikipedia.org/wiki/Geohash
https://aws.amazon.com/fr/blogs/mobile/geo-library-for-amazon-dynamodb-part-1-table-structure/
https://github.com/awslabs/dynamodb-geo
Your "ideal" is impossible.
You want a mapping (x, y) -> i where x, y, and i are all 32-bit quantities, which is guaranteed not to generate duplicate values of i.
Here's why: suppose there is a function hash() so that hash(x, y) gives different integer values. There are 2^32 (about 4 billion) values for x, and 2^32 values of y. So hash(x, y) has 2^64 (about 16 million trillion) possible results. But there are only 2^32 possible values in a 32-bit int, so the result of hash() won't fit in a 32-bit int.
See also http://en.wikipedia.org/wiki/Counting_argument
Generally, you should always design your data structures to deal with collisions. (Unless your hashes are very long (at least 128 bit), very good (use cryptographic hash functions), and you're feeling lucky).
Perhaps?
hash = ((y & 0xFFFF) << 16) | (x & 0xFFFF);
Works as long as x and y can be stored as 16 bit integers. No idea about how many collisions this causes for larger integers, though. One idea might be to still use this scheme but combine it with a compression scheme, such as taking the modulus of 2^16.
If you can do a = ((y & 0xffff) << 16) | (x & 0xffff) then you could afterward apply a reversible 32-bit mix to a, such as Thomas Wang's
uint32_t hash( uint32_t a)
a = (a ^ 61) ^ (a >> 16);
a = a + (a << 3);
a = a ^ (a >> 4);
a = a * 0x27d4eb2d;
a = a ^ (a >> 15);
return a;
}
That way you get a random-looking result rather than high bits from one dimension and low bits from the other.
You can do
a >= b ? a * a + a + b : a + b * b
taken from here.
That works for points in positive plane. If your coordinates can be in negative axis too, then you will have to do:
A = a >= 0 ? 2 * a : -2 * a - 1;
B = b >= 0 ? 2 * b : -2 * b - 1;
A >= B ? A * A + A + B : A + B * B;
But to restrict the output to uint you will have to keep an upper bound for your inputs. and if so, then it turns out that you know the bounds. In other words in programming its impractical to write a function without having an idea on the integer type your inputs and output can be and if so there definitely will be a lower bound and upper bound for every integer type.
public uint GetHashCode(whatever a, whatever b)
{
if (a > ushort.MaxValue || b > ushort.MaxValue ||
a < ushort.MinValue || b < ushort.MinValue)
{
throw new ArgumentOutOfRangeException();
}
return (uint)(a * short.MaxValue + b); //very good space/speed efficiency
//or whatever your function is.
}
If you want output to be strictly uint for unknown range of inputs, then there will be reasonable amount of collisions depending upon that range. What I would suggest is to have a function that can overflow but unchecked. Emil's solution is great, in C#:
return unchecked((uint)((a & 0xffff) << 16 | (b & 0xffff)));
See Mapping two integers to one, in a unique and deterministic way for a plethora of options..
According to your use case, it might be possible to use a Quadtree and replace points with the string of branch names. It is actually a sparse representation for points and will need a custom Quadtree structure that extends the canvas by adding branches when you add points off the canvas but it avoids collisions and you'll have benefits like quick nearest neighbor searches.
If you're already using languages or platforms that all objects (even primitive ones like integers) has built-in hash functions implemented (Java platform Languages like Java, .NET platform languages like C#. And others like Python, Ruby, etc ).
You may use built-in hashing values as a building block and add your "hashing flavor" in to the mix. Like:
// C# code snippet
public class SomeVerySimplePoint {
public int X;
public int Y;
public override int GetHashCode() {
return ( Y.GetHashCode() << 16 ) ^ X.GetHashCode();
}
}
And also having test cases like "predefined million point set" running against each possible hash generating algorithm comparison for different aspects like, computation time, memory required, key collision count, and edge cases (too big or too small values) may be handy.
the Fibonacci hash works very well for integer pairs
multiplier 0x9E3779B9
other word sizes 1/phi = (sqrt(5)-1)/2 * 2^w round to odd
a1 + a2*multiplier
this will give very different values for close together pairs
I do not know about the result with all pairs