How can I generate the following matrix having m rows and n columns?
1st row 1 2 3 L n-1 n
2nd 2 3 4 L n 1
3rd 3 4 5 n-1 1 2
Nth M M M ....
N-1 m-1 m m+1 L m-3 m-2
last m m+1 m+2 l m-2 m-1
It's difficult to tell from your description, but it appears you want to create a matrix where the first row is 1:n and each successive row is a circular shift to the left of the previous row. If so, you can still use hankel for this (as Dev-iL mentions in their answer), but incorporate a remainder operation like so:
n = 5;
m = 8;
mat = rem(hankel(0:(m-1), (m-1):(m+n-2)), n)+1
mat =
1 2 3 4 5
2 3 4 5 1
3 4 5 1 2
4 5 1 2 3
5 1 2 3 4
1 2 3 4 5
2 3 4 5 1
3 4 5 1 2
This looks like a Hankel matrix. You should use the 2-input syntax for it,
H = hankel(c,r)
So for example, with m = 4 and n = 5 we get:
m = 4; n = 5;
X = hankel( 1:m, m:m+n-1 )
X =
1 2 3 4 5
2 3 4 5 6
3 4 5 6 7
4 5 6 7 8
Related
If I have this vector:
x = [1 1 1 1 1 2 2 2 3 4 4 6 6 6 6]
I would like to get the position of each unique number according to itself.
y = [1 2 3 4 5 1 2 3 1 1 2 1 2 3 4]
At the moment I'm using:
y = sum(triu(x==x.')) % MATLAB 2016b and above
It's compact but obviously not memory efficient.
For the pure beauty of MATLAB programming I would avoid using a loop. Do you have a better simple implementation ?
Context:
My final goal is to sort the vector x but with the constraint that a number that appear N times has the priority over another number that has appeared more than N times:
[~,ind] = sort(y);
x_relative_sort = x(ind);
% x_relative_sort = 1 2 3 4 6 1 2 4 6 1 2 6 1 6 1
Assuming x is sorted, here's one vectorized alternative using unique, diff, and cumsum:
[~, index] = unique(x);
y = ones(size(x));
y(index(2:end)) = y(index(2:end))-diff(index).';
y = cumsum(y);
And now you can apply your final sorting:
>> [~, ind] = sort(y);
>> x_relative_sort = x(ind)
x_relative_sort =
1 2 3 4 6 1 2 4 6 1 2 6 1 6 1
If you have positive integers you can use sparse matrix:
[y ,~] = find(sort(sparse(1:numel(x), x, true), 1, 'descend'));
Likewise x_relative_sort can directly be computed:
[x_relative_sort ,~] = find(sort(sparse(x ,1:numel(x),true), 2, 'descend'));
Just for variety, here's a solution based on accumarray. It works for x sorted and containing positive integers, as in the question:
y = cell2mat(accumarray(x(:), x(:), [], #(t){1:numel(t)}).');
You can be more memory efficient by only comparing to unique(x), so you don't have a large N*N matrix but rather N*M, where N=numel(x), M=numel(unique(x)).
I've used an anonymous function syntax to avoid declaring an intermediate matrix variable, needed as it's used twice - this can probably be improved.
f = #(X) sum(cumsum(X,2).*X); y = f(unique(x).'==x);
Here's my solution that doesn't require sorting:
x = [1 1 1 1 1 2 2 2 3 4 4 6 6 6 6 1 1 1];
y = cell2mat( splitapply(#(v){cumsum(v)},x,cumsum(logical([1 diff(x)]))) ) ./ x;
Explanation:
% Turn each group new into a unique number:
t1 = cumsum(logical([1 diff(x)]));
% x = [1 1 1 1 1 2 2 2 3 4 4 6 6 6 6 1 1 1];
% t1 = [1 1 1 1 1 2 2 2 3 4 4 5 5 5 5 6 6 6];
% Apply cumsum separately to each group:
t2 = cell2mat( splitapply(#(v){cumsum(v)},x,t1) );
% t1 = [1 1 1 1 1 2 2 2 3 4 4 5 5 5 5 6 6 6];
% t2 = [1 2 3 4 5 2 4 6 3 4 8 6 12 18 24 1 2 3];
% Finally, divide by x to get the increasing values:
y = t2 ./ x;
% x = [1 1 1 1 1 2 2 2 3 4 4 6 6 6 6 1 1 1];
% t2 = [1 2 3 4 5 2 4 6 3 4 8 6 12 18 24 1 2 3];
As the title says, I want to find all rows in a Matlab matrix that in certain columns the values in the row are equal with the values in the previous row, or in general, equal in some row in the matrix. For example I have a matrix
1 2 3 4
1 2 8 10
4 5 7 9
2 3 6 4
1 2 4 7
and I want to find the following rows:
1 2 3 4
1 2 3 10
1 2 4 7
How do I do something like that and how do I do it generally for all the possible pairs in columns 1 and 2, and have equal values in previous rows, that exist in the matrix?
Here's a start to see if we're headed in the right direction:
>> M = [1 2 3 4;
1 2 8 10;
4 5 7 9;
2 3 6 4;
1 2 4 7];
>> N = M; %// copy M into a new matrix so we can modify it
>> idx = ismember(N(:,1:2), N(1,1:2), 'rows')
idx =
1
1
0
0
1
>> N(idx, :)
ans =
1 2 3 4
1 2 8 10
1 2 4 7
Then you can remove those rows from the original matrix and repeat.
>> N = N(~idx,:)
N =
4 5 7 9
2 3 6 4
this will give you the results
data1 =[1 2 3 4
1 2 8 10
4 5 7 9
2 3 6 4
1 2 4 7];
data2 = [1 2 3 4
1 2 3 10
1 2 4 7];
[exists,position] = ismember(data1,data2, 'rows')
where the exists vector tells you wheter the row is on the other matrix and position gives you the position...
a less elegant and simpler version would be
array_data1 = reshape (data1',[],1);
array_data2 = reshape (data2',[],1);
matchmatrix = zeros(size(data2,1),size(data1,1));
for irow1 = 1: size(data2,1)
for irow2 = 1: size(data1,1)
matchmatrix(irow1,irow2) = min(data2(irow1,:) == data1(irow2,:))~= 0;
end
end
the matchmatrix is to read as a connectivity matrix where value of 1 indicates which row of data1 matches with which row of data2
Supose there is a Matrix
A =
1 3 2 4
4 2 5 8
6 1 4 9
and I have a Vector containing the "class" of each column of this matrix for example
v = [1 , 1 , 2 , 3]
How can I sum the columns of the matrix to a new matrix as column vectors each to the column of their class? In this example columns 1 and 2 of A would added to the first column of the new matrix, column 2 to the 3 to the 2nd, column 4 the the 3rd.
Like
SUM =
4 2 4
6 5 8
7 4 9
Is this possible without loops?
One of the perfect scenarios to combine the powers of accumarray and bsxfun -
%// Since we are to accumulate columns, first step would be to transpose A
At = A.' %//'
%// Create a vector of linear IDs for use with ACCUMARRAY later on
idx = bsxfun(#plus,v(:),[0:size(A,1)-1]*max(v))
%// Use ACCUMARRAY to accumulate rows from At, i.e. columns from A based on the IDs
out = reshape(accumarray(idx(:),At(:)),[],size(A,1)).'
Sample run -
A =
1 3 2 4 6 0
4 2 5 8 9 2
6 1 4 9 8 9
v =
1 1 2 3 3 2
out =
4 2 10
6 7 17
7 13 17
An alternative with accumarray in 2D. Generate a grid with the vector v and then apply accumarray:
A = A.';
v = [1 1 2 3];
[X, Y] = ndgrid(v,1:size(A,2));
Here X and Y look like this:
X =
1 1 1
1 1 1
2 2 2
3 3 3
Y =
1 2 3
1 2 3
1 2 3
1 2 3
Then apply accumarray:
B=accumarray([X(:) Y(:)],A(:)),
SUM = B.'
SUM =
4 2 4
6 5 8
7 4 9
As you see, using [X(:) Y(:)] create the following array:
ans =
1 1
1 1
2 1
3 1
1 2
1 2
2 2
3 2
1 3
1 3
2 3
3 3
in which the vector v containing the "class" is replicated 3 times since there are 3 unique classes that are to be summed up together.
EDIT:
As pointed out by knedlsepp you can get rid of the transpose to A and B like so:
[X2, Y2] = ndgrid(1:size(A,1),v);
B = accumarray([X2(:) Y2(:)],A(:))
which ends up doing the same. I find it a bit more easier to visualize with the transposes but that gives the same result.
How about a one-liner?
result = full(sparse(repmat(v,size(A,1),1), repmat((1:size(A,1)).',1,size(A,2)), A));
Don't optimize prematurely!
The for loop performs fine for your problem:
out = zeros(size(A,1), max(v));
for i = 1:numel(v)
out(:,v(i)) = out(:,v(i)) + A(:,i);
end
BTW: With fine, I mean: fast, fast, fast!
Given the matrix I = [1,2;3,4], I would like to duplicate the elements to create a matrix I2 such that:
I2 = [1 1 1 2 2 2
1 1 1 2 2 2
1 1 1 2 2 2
3 3 3 4 4 4
3 3 3 4 4 4
3 3 3 4 4 4]
Other than using repmat, what other methods or functions are available?
Use kron:
>> N = 3 %// Number of times to replicate a number in each dimension
>> I = [1,2;3,4];
>> kron(I, ones(N))
ans =
1 1 1 2 2 2
1 1 1 2 2 2
1 1 1 2 2 2
3 3 3 4 4 4
3 3 3 4 4 4
3 3 3 4 4 4
This probably deserves some explanation in case you're not aware of what kron does. kron stands for the Kronecker Tensor Product. kron between two matrices A of size m x n and B of size p x q creates an output matrix of size mp x nq such that:
Therefore, for each coefficient in A, we take this value, multiply it with every value in the matrix B and we position these matrices in the same order as we see in A. As such, if we let A = I, and B be the 3 x 3 matrix full of ones, you thus get the above result.
Using indexing:
I = [1, 2; 3, 4]; %// original matrix
n = 3; %// repetition factor
I2 = I(ceil(1/n:1/n:size(I,1)), ceil(1/n:1/n:size(I,2))); %// result
One-liner with bsxfun -
R = 3; %// Number of replications
I2 = reshape(bsxfun(#plus,permute(I,[3 1 4 2]),zeros(R,1,R)),R*size(I,1),[])
Sample run -
I =
3 2 5
9 8 9
I2 =
3 3 3 2 2 2 5 5 5
3 3 3 2 2 2 5 5 5
3 3 3 2 2 2 5 5 5
9 9 9 8 8 8 9 9 9
9 9 9 8 8 8 9 9 9
9 9 9 8 8 8 9 9 9
How can I avoid using a double for loop in order to build a matrix pos like this code does:
pos=[0 0];
for i=1:m;
for j=1:n;
pos=[pos; i j];
end
end
m and n are numbers such as 500 and 900.
I have to find a better solution in order improve computation time.
Thank you so much.
You can easily do this by meshgrid.
[X,Y] = meshgrid(1:m, 1:n);
pos = [0 0; X(:) Y(:)];
How the above code works is the following. meshgrid (in this case) creates a 2D grid of (X,Y) co-ordinates. X progresses horizontally while Y progresses vertically. As we can see in your for loops, m defines the horizontal boundaries while n denotes the vertical boundaries. By calling meshgrid(1:m, 1:n), I am creating a n x m grid for both X and Y, where each row of X progresses from 1 to m, while each column of Y progresses from 1 to n. Therefore, these will both be n x m matrices. Calling the above with m = 4 and n = 5 computes:
m = 4;
n = 5;
[X,Y] = meshgrid(1:m, 1:n)
X =
1 2 3 4
1 2 3 4
1 2 3 4
1 2 3 4
1 2 3 4
Y =
1 1 1 1
2 2 2 2
3 3 3 3
4 4 4 4
5 5 5 5
This almost follows the format you wish. You'll notice that by looking at the columns individually, this achieves what you want, but you want to stack all of the X and Y to be in a (n x m) + 1 x 2 matrix (1 to account for [0 0]). All we have to do now is take every column of X and Y and stack them on top of each other to create a single column for both. We can stack all of these together by doing X(:) and Y(:). X(:) will take every column of X and create a single column that stacks all of the columns together. The same is done for Y(:). As such, we first create pos by attaching [0 0] as the first row, and we then attach X(:) and Y(:) as columns to pos after, thus completing the construction of pos.
Let's do an example as a proof-of-concept. Suppose that we use the same values like we did before:
m = 4;
n = 5;
Using your for loop, we get:
pos =
0 0
1 1
1 2
1 3
1 4
1 5
2 1
2 2
2 3
2 4
2 5
3 1
3 2
3 3
3 4
3 5
4 1
4 2
4 3
4 4
4 5
Using the code I have written, we also get:
pos =
0 0
1 1
1 2
1 3
1 4
1 5
2 1
2 2
2 3
2 4
2 5
3 1
3 2
3 3
3 4
3 5
4 1
4 2
4 3
4 4
4 5
Minor Note
As you stated that m and n are going to be relatively large, I would recommend you clear X and Y from your workspace before you proceed. X and Y were only created to help you create pos. As you don't need them anymore, after you calculate pos, do:
clear X;
clear Y;