REST design - Updating a big resource with a lot of related models - rest

I'm working on an application which has some very big models. Counting the base table and all of the related tables it's about 30 tables now for describing a Real Estate property.
So the thing is, based on REST, I would have to have like 30 subroutes for a property to update each related model.
/properties
/properties/1
/properties/1/availability
/properties/1/surfaces
/properties/1/extras
/properties/1/images
...
A property really has a lot of things related to it, trust me.
Now this design above looks really cool but when it comes to working with it, it migth be a bit cumbersome.
I have 2 clients, one is an internal company dashboard and the other one is a dashboard for our users.
They have a nice view of everything that is attached to a property and can modify it by changing data in form fields and clicking "submit".
Rigth now I'm mixing a bit of what they call:
Fine grained CRUD resources versus Coarse Grained resources
Which means that you can POST /properties/1 with a huge JSON object and change some related models.
If I would apply perfect REST API design I would end up making 30 requests everytime a user hits the save button.
Is it correct to updated related models (let's say you can change some basic data but also the availability the extras and the images) by making a PUT request to the main resource (/properties/1) instead of "properties/1/images"?.
Not sure if this is directly stackoverflow related. I apologize in advance if it's not.

So the thing is, based on REST, I would have to have like 30 subroutes for a property to update each related model.
Most important question to ask when designing a REST API
How would I do this as a web site?
If your answer is: "I would have 30 different pages that clients could load and modify", then knock yourself out.
You might find that applying the principles of a task based ui will be some help.
Is it correct to updated related models (let's say you can change some basic data but also the availability the extras and the images) by making a PUT request to the main resource (/properties/1) instead of "properties/1/images"?.
As Roman Vottner already noted - yes, RFC 7231 makes it explicit that the modification of one resource can have side effects elsewhere. Fundamentally, HTTP describes semantics, not implementation. What you do in the black box is up to you -- the only constraints are on the messages exchanged and their interpretations.
HTTP cares a lot less about how you update your model(s) than it does about which cached representations your modifications invalidate.

Related

Rest api with generic User

I created a few Rest apis right now and I always preferred a solution, where I created an endpoint for each resource.
For example:
GET .../employees/{id}/account
GET .../supervisors/{id}/account
and the same with the other http methods like put, post and delete. This blows up my api pretty much. My rest apis in general preferred redundancy to reduce complexity but in this cases it always feels a bit cumbersome. So I create another approach where I work with inheritance to keep the "dry" principle.
In this case there is a base class User and via inheritance my employee and supervisor model extends from it. Now I only need one endpoint like
GET .../accounts/{id}
and the server decides which object is returned. Also while this thins out my api, it increases complexity and in my api documentation ( where I use spring rest docs ) I have to document two different Objects for the same endpoint.
Now I am not sure about what is the right way to do it ( or at least the better way ). When I think about Rest, I think in resources. So my employees are a seperate resource as well as my supervisors.
Because I always followed this approach, I tink I might be mentally run in it and maybe lost the objectivity.
It would be great if you can give my any objective advice on how this should be handled.
I built an online service that deals with this too. It's called Wirespec:
https://wirespec.dev
The backend automatically creates the url for users and their endpoints dynamically with very little code. The code for handling the frontend is written in Kotlin while the backend for generating APIs for users is written in Node.js. In both cases, the amount of code is very negligible and self-maintaining, meaning that if the user changes the name of their API, the endpoint automatically updates with the name. Here are some examples:
API: https://wirespec.dev/Wirespec/projects/apis/Stackoverflow/apis/getUserDetails
Endpoint: https://api.wirespec.dev/wirespec/stackoverflow/getuserdetails?id=100
So to answer your question, it really doesn't matter where you place the username in the url.
Try signing in to Wirespec with your Github account and you'll see where your Github username appears in the url.
There is, unfortunately, no wright or wrong answer to this one and it soley depends on how you want to design things.
With that being said, you need to distinguish between client and server. A client shouldn't know the nifty details of your API. It is just an arbitrary consumer of your API that is fed all the information it needs in order to make informed choices. I.e. if you want the client to send some data to the server that follows a certain structure, the best advice is to use from-like representations, such as HAL forms, Ion or even HTML. Forms not only teach a client about the respective properties a resource supports but also about the HTTP operation to use, the target URI to send the request to as well as the representation format to send the data in, which in case of HTML is application/x-www-form-urlencoded most of the time.
In regards to receiving data from the server, a client shouldn't attempt to extract knowledge from URIs directly, as they may change over time and thus break clients that rely on such a methodology, but rely on link relation names. Per URI there might be multiple link relation names attached to that URI. A client not knowing the meaning of one should simply ignore it. Here, either one of the standardized link relation names should be used or an extension mechanism as defined by Web linking. While an arbitrary client might not make sense from this "arbitrary string" out of the box, the link relation name may be considered the predicate in a tripple often used in ontologies where the link relation name "connects" the current resource with the one the link relation was annotated for. For a set of URIs and link relation names you might therefore "learn" a semantic graph over all the resources and how they are connected to each other. I.e. you might annotate an URI pointing to a form resource with prefetch to hint a client that it may load the content of the referenced URI if it is IDLE as the likelihood is high that the client will be interested to load that resource next anyway. The same URI might also be annotated with edit-form to hint a client that the resource will provide an edit form to send some data to the server. It might also contain a Web linking extension such as https://acme.org/ref/orderForm that allows clients, that support such a custom extension, to react to such a resource accordingly.
In your accounts example, it is totally fine to return different data for different resources of the same URI-path. I.e. resource A pointing to an employee account might only contain properties name, age, position, salery while resource B pointing to a supervisor could also contain a list of subordinates or the like. To a generic HTTP client these are two totally different resources even though they used a URI structure like /accounts/{id}. Resources in a REST architecture are untyped, meaning they don't have a type ouf of the box per se. Think of some arbitrary Web page you access through your browser. Your browser is not aware of whether the Web page it renders contains details about a specific car or about the most recent local news. HTML is designed to express a multitude of different data in the same way. Different media types though may provide more concrete hints about the data exchanged. I.e. text/vcard, applciation/vcard+xml or application/vcard+json all may respresent data describing an entity (i.e. human person, jusistic entity, animal, ...) while application/mathml+xml might be used to express certain mathematical formulas and so on. The more general a media type is, the more wiedspread usage it may find. With more narrow media types however you can provide more specific support. With content type negotiation you also have a tool at your hand where a client can express its capabilities to servers and if the server/API is smart enough it can respond with a representation the client is able to handle.
This in essence is all what REST is and if followed correctly allow the decoupling of clients from specific servers. While this might sound confusing and burdensome to implement at first, these techniques are intended if you strive for a long-lasting environment that still is able to operate in decateds to come. Evolution is inherently integrated into this phiolosophy and supported by the decoupled design. If you don't need all of that, REST might not be the thing you want to do actually. Buf if you still want something like REST, you for sure should design the interactions between client and server as if you'd intereact with a typical Web server. After all, REST is just a generalization of the concepts used on the Web quite successfully for the past two decades.

RESTful syntax. Is it Eager/Lazy or both?

I am trying to follow RESTful principles and a little confused on how "Eager" or "Lazy" endpoints would be set up.
For example, a
Shop has many Products
Products have many Ingredients.
Products have many Packging
Of course a "bad" endpoint that would fetch eagerly would be:
api/shop/1
Would return shop id 1's details but also with:
ALL the Products
ALL the Product's Ingredients
ALL the Product's Packging
This of course is a crazy model...so I can only guess RESTful is "always lazy" by default?
But with "lazy be default" say you want to get 10 different products AND their ingredients...
api/shop/1/product/1/ingredients
api/shop/1/product/2/ingredients
api/shop/1/product/3/ingredients
The number of requests is getting a little high...10 seperate HTTP requests for the 10 products.
So lastly, do you instead tend to design the RESTful endpoints based on what the front-end/consumer may want as opposed to modelling the business/database?
api/shop/1/product-details?productId=1,2,3,4,5,6,7,8,9,10
Is the above strictly "RESTful"?
So I guess the real underlying question is sort of:
Is RESTful API design a model of the Data or a model of the Views?
Is RESTful API design a model of the Data or a model of the Views?
Views is closer -- it's a model of resources
Your data model is not your object model is not your resource model is not your affordance model. -- Amundsen
The simplest analogy is to look at java script in an HTML page
we can embed the java script in the HTML page
we can link to the java script from the HTML page.
Both approaches work - they have different trade offs, primarily in how caching works.
Coarse grained resources are somewhat analogous to data transfer objects; exchange a large representation in a single request/response, and then the client can do lots of different things with that one representation.
Fine grained resources give you more control of caching strategies (the different parts can expire at different times), and perhaps respond better to scenarios where we expect the client to be sending back edited representations of those resources.
One issue that fine grained resources have had is the extra burden of round trips. HTTP/2 improves that story, as server push can be used to chain representations of multiple resources onto a single response -- all of the fine grained resources can be sent in a single burst.
But even so, we're talking about identifying resources, not database entities.
https://stackoverflow.com/questions/57420131/restful-syntax-is-it-eager-lazy-or-both
That's an identifier for a web page about a question
https://api.stackexchange.com/2.2/questions/57420131?site=stackoverflow
That's a different resource describing the same question.
REST API's aren't about exposing your data model via HTTP, they are about exchanging documents so that a client can navigate a protocol that gets useful work done. See Webber 2011.

How to structure a RESTful backend API with a database?

I want to make an API using REST which interacts (stores) data in a database.
While I was reading some design patterns and I came across remote facade, and the book I was reading mentions that the role of this facade is to translate the course grained methods from the remote calls into fine grained local calls, and that it should not have any extra logic. As an explaination, it says that the program should still work without this facade.
Here's an example
Yet I have two questions:
Considering I also have a database, does it make sense to split the general call into specific calls for each attribute? Doesn't it make more sense to just have a general "get data" method that runs one query against the database and converts it into an usable object, to reduce the number of database calls? So instead of splitting the get address to get street, get city, get zip, make on db call for all that info.
With all this in mind, and, in my case using golang, how should the project be structured in terms of files and functions?
I will have the main file with all the endpoints from the REST API, calling the controllers that handle these requests.
I will have a set of files that define those controllers. Are these controllers the remote facade? Should those methods not have logic in that case, and just call the equivalent local methods?
Should the local methods call the database directly, or should they use some sort of helper class that accesses the database?
Assuming all questions are positive, does the following structure make sense?
Main
Controllers
Domain
Database helper
First and foremost, as Mike Amundsen has stated
Your data model is not your object model is not your resource model is not your affordance model
Jim Webber did say something very similar, that by implementing a REST architecture you have an integration model, in the form of the Web, which is governed by HTTP and the other being the domain model. Resources adept and project your domain model to the world, though there is no 1:1 mapping between the data in your database and the representations you send out. A typical REST system does have many more resources than you have DB entries in your domain model.
With that being said, it is hard to give concrete advice on how you should structure your project, especially in terms of a certain framework you want to use. In regards to Robert "Uncle Bob" C. Martin on looking at the code structure, it should tell you something about the intent of the application and not about the framework¹ you use. According to him Architecture is about intent. Though what you usually see is the default-structure imposed by a framework such as Maven, Ruby on Rails, ... For golang you should probably read through certain documentation or blogs which might or might not give you some ideas.
In terms of accessing the database you might either try to follow a micro-service architecture where each service maintains their own database or you attempt something like a distributed monolith that acts as one cohesive system and shares the database among all its parts. In case you scale to the broad and a couple of parallel services consume data, i.e. in case of a message broker, you might need a distributed lock and/or queue to guarantee that the data is not consumed by multiple instances at the same time.
What you should do, however, is design your data layer in a way that it does scale well. What many developers often forget or underestimate is the benefit they can gain from caching. Links are basically used on the Web to reference from one resource to an other and giving the relation some semantic context by the utilization of well-defined link-relation names. Link relations also allow a server to control its own namespace and change URIs as needed. But URIs are not only pointers to a resource a client can invoke but also keys for a cache. Caching can take place on multiple locations. On the server side to avoid costly calculations or look ups on the client side to avoid sending requests out in general or on intermediary hops which allow to take away pressure from heavily requested servers. Fielding made caching even a constraint that needs to be respected.
In regards to what attributes you should create queries for is totally dependent on the use case you attempt to depict. In case of the address example given it does make sense to return the address information all at once as the street or zip code is rarely queried on its own. If the address is part of some user or employee data it is more vague whether to return that information as part of the user or employee data or just as a link that should be queried on its own as part of a further request. What you return may also depend on the capabilities of the media-type client and your service agree upon (content-type negotiation).
If you implement something like a grouping for i.e. some football players and certain categories they belong to, such as their teams and whether they are offense or defense players, you might have a Team A resource that includes all of the players as embedded data. Within the DB you could have either an own table for teams and references to the respective player or the team could just be a column in the player table. We don't know and a client usually doesn't bother as well. From a design perspective you should however be aware of the benefits and consequences of including all the players at the same time in regards to providing links to the respective player or using a mixed approach of presenting some base data and a link to learn further details.
The latter approach is probably the most sensible way as this gives a client enough information to determine whether more detailed data is needed or not. If needed a simple GET request to the provided URI is enough, which might be served by a cache and thus never reach the actual server at all. The first approach has for sure the disadvantage that it doesn't reuse caching optimally and may return way more data then actually needed. The approach to include links only may not provide enough information forcing the client to perform a follow-up request to learn data about the team member. But as mentioned before, you as the service designer decide which URIs or queries are returned to the client and thus can design your system and data model accordingly.
In general what you do in a REST architecture is providing a client with choices. It is good practice to design the overall interaction flow as a state machine which is traversed through receiving requests and returning responses. As REST uses the same interaction model as the Web, it probably feels more natural to design the whole system as if you'd implement it for the Web and then apply the design to your REST system.
Whether controllers should contain business logic or not is primarily an opinionated question. As Jim Webber correctly stated, HTTP, which is the de-facto transport layer of REST, is an
application protocol whose application domain is the transfer of documents over a network. That is what HTTP does. It moves documents around. ... HTTP is an application protocol, but it is NOT YOUR application protocol.
He further points out that you have to narrow HTTP into a domain application protocol and trigger business activities as a side-effect of moving documents around the network. So, it's the side-effect of moving documents over the network that triggers your business logic. There is no straight rule whether to include business logic in your controller or not, but usually you try to keep the business logic in yet their own layer, i.e. as a service that you just invoke from within the controller. That allows to test the business logic without the need of the controller and thus without the need of a real HTTP request.
While this answer can't provide more detailed information, partly due to the broad nature of the question itself, I hope I could shed some light in what areas you should put in some thoughts and that your data model is not necessarily your resource or affordance model.

What is the advantage of using REST instead of non-REST HTTP?

Apparently, REST is just a set of conventions about how to use HTTP. I wonder which advantage these conventions provide. Does anyone know?
I don't think you will get a good answer to this, partly because nobody really agrees on what REST is. The wikipedia page is heavy on buzzwords and light on explanation. The discussion page is worth a skim just to see how much people disagree on this. As far as I can tell however, REST means this:
Instead of having randomly named setter and getter URLs and using GET for all the getters and POST for all the setters, we try to have the URLs identify resources, and then use the HTTP actions GET, POST, PUT and DELETE to do stuff to them. So instead of
GET /get_article?id=1
POST /delete_article id=1
You would do
GET /articles/1/
DELETE /articles/1/
And then POST and PUT correspond to "create" and "update" operations (but nobody agrees which way round).
I think the caching arguments are wrong, because query strings are generally cached, and besides you don't really need to use them. For example django makes something like this very easy, and I wouldn't say it was REST:
GET /get_article/1/
POST /delete_article/ id=1
Or even just include the verb in the URL:
GET /read/article/1/
POST /delete/article/1/
POST /update/article/1/
POST /create/article/
In that case GET means something without side-effects, and POST means something that changes data on the server. I think this is perhaps a bit clearer and easier, especially as you can avoid the whole PUT-vs-POST thing. Plus you can add more verbs if you want to, so you aren't artificially bound to what HTTP offers. For example:
POST /hide/article/1/
POST /show/article/1/
(Or whatever, it's hard to think of examples until they happen!)
So in conclusion, there are only two advantages I can see:
Your web API may be cleaner and easier to understand / discover.
When synchronising data with a website, it is probably easier to use REST because you can just say synchronize("/articles/1/") or whatever. This depends heavily on your code.
However I think there are some pretty big disadvantages:
Not all actions easily map to CRUD (create, read/retrieve, update, delete). You may not even be dealing with object type resources.
It's extra effort for dubious benefits.
Confusion as to which way round PUT and POST are. In English they mean similar things ("I'm going to put/post a notice on the wall.").
So in conclusion I would say: unless you really want to go to the extra effort, or if your service maps really well to CRUD operations, save REST for the second version of your API.
I just came across another problem with REST: It's not easy to do more than one thing in one request or specify which parts of a compound object you want to get. This is especially important on mobile where round-trip-time can be significant and connections are unreliable. For example, suppose you are getting posts on a facebook timeline. The "pure" REST way would be something like
GET /timeline_posts // Returns a list of post IDs.
GET /timeline_posts/1/ // Returns a list of message IDs in the post.
GET /timeline_posts/2/
GET /timeline_posts/3/
GET /message/10/
GET /message/11/
....
Which is kind of ridiculous. Facebook's API is pretty great IMO, so let's see what they do:
By default, most object properties are returned when you make a query.
You can choose the fields (or connections) you want returned with the
"fields" query parameter. For example, this URL will only return the
id, name, and picture of Ben:
https://graph.facebook.com/bgolub?fields=id,name,picture
I have no idea how you'd do something like that with REST, and if you did whether it would still count as REST. I would certainly ignore anyone who tries to tell you that you shouldn't do that though (especially if the reason is "because it isn't REST")!
Simply put, REST means using HTTP the way it's meant to be.
Have a look at Roy Fielding's dissertation about REST. I think that every person that is doing web development should read it.
As a note, Roy Fielding is one of the key drivers behind the HTTP protocol, as well.
To name some of the advandages:
Simple.
You can make good use of HTTP cache and proxy server to help you handle high load.
It helps you organize even a very complex application into simple resources.
It makes it easy for new clients to use your application, even if you haven't designed it specifically for them (probably, because they weren't around when you created your app).
Simply put: NONE.
Feel free to downvote, but I still think there are no real benefits over non-REST HTTP. All current answers are invalid. Arguments from the currently most voted answer:
Simple.
You can make good use of HTTP cache and proxy server to help you handle high load.
It helps you organize even a very complex application into simple resources.
It makes it easy for new clients to use your application, even if you haven't designed it specifically for them (probably, because they weren't around when you created your app).
1. Simple
With REST you need additional communication layer for your server-side and client-side scripts => it's actually more complicated than use of non-REST HTTP.
2. Caching
Caching can be controlled by HTTP headers sent by server. REST does not add any features missing in non-REST.
3. Organization
REST does not help you organize things. It forces you to use API supported by server-side library you are using. You can organize your application the same way (or better) when you are using non-REST approach. E.g. see Model-View-Controller or MVC routing.
4. Easy to use/implement
Not true at all. It all depends on how well you organize and document your application. REST will not magically make your application better.
IMHO the biggest advantage that REST enables is that of reducing client/server coupling. It is much easier to evolve a REST interface over time without breaking existing clients.
Discoverability
Each resource has references to other resources, either in hierarchy or links, so it's easy to browse around. This is an advantage to the human developing the client, saving he/she from constantly consulting the docs, and offering suggestions. It also means the server can change resource names unilaterally (as long as the client software doesn't hardcode the URLs).
Compatibility with other tools
You can CURL your way into any part of the API or use the web browser to navigate resources. Makes debugging and testing integration much easier.
Standardized Verb Names
Allows you to specify actions without having to hunt the correct wording. Imagine if OOP getters and setters weren't standardized, and some people used retrieve and define instead. You would have to memorize the correct verb for each individual access point. Knowing there's only a handful of verbs available counters that problem.
Standardized Status
If you GET a resource that doesn't exist, you can be sure to get a 404 error in a RESTful API. Contrast it with a non-RESTful API, which may return {error: "Not found"} wrapped in God knows how many layers. If you need the extra space to write a message to the developer on the other side, you can always use the body of the response.
Example
Imagine two APIs with the same functionality, one following REST and the other not. Now imagine the following clients for those APIs:
RESTful:
GET /products/1052/reviews
POST /products/1052/reviews "5 stars"
DELETE /products/1052/reviews/10
GET /products/1052/reviews/10
HTTP:
GET /reviews?product_id=1052
POST /post_review?product_id=1052 "5 stars"
POST /remove_review?product_id=1052&review_id=10
GET /reviews?product_id=1052&review=10
Now think of the following questions:
If the first call of each client worked, how sure can you be the rest will work too?
There was a major update to the API that may or may not have changed those access points. How much of the docs will you have to re-read?
Can you predict the return of the last query?
You have to edit the review posted (before deleting it). Can you do so without checking the docs?
I recommend taking a look at Ryan Tomayko's How I Explained REST to My Wife
Third party edit
Excerpt from the waybackmaschine link:
How about an example. You’re a teacher and want to manage students:
what classes they’re in,
what grades they’re getting,
emergency contacts,
information about the books you teach out of, etc.
If the systems are web-based, then there’s probably a URL for each of the nouns involved here: student, teacher, class, book, room, etc. ... If there were a machine readable representation for each URL, then it would be trivial to latch new tools onto the system because all of that information would be consumable in a standard way. ... you could build a country-wide system that was able to talk to each of the individual school systems to collect testing scores.
Each of the systems would get information from each other using a simple HTTP GET. If one system needs to add something to another system, it would use an HTTP POST. If a system wants to update something in another system, it uses an HTTP PUT. The only thing left to figure out is what the data should look like.
I would suggest everybody, who is looking for an answer to this question, go through this "slideshow".
I couldn't understand what REST is and why it is so cool, its pros and cons, differences from SOAP - but this slideshow was so brilliant and easy to understand, so it is much more clear to me now, than before.
Caching.
There are other more in depth benefits of REST which revolve around evolve-ability via loose coupling and hypertext, but caching mechanisms are the main reason you should care about RESTful HTTP.
It's written down in the Fielding dissertation. But if you don't want to read a lot:
increased scalability (due to stateless, cache and layered system constraints)
decoupled client and server (due to stateless and uniform interface constraints)
reusable clients (client can use general REST browsers and RDF semantics to decide which link to follow and how to display the results)
non breaking clients (clients break only by application specific semantics changes, because they use the semantics instead of some API specific knowledge)
Give every “resource” an ID
Link things together
Use standard methods
Resources with multiple representations
Communicate statelessly
It is possible to do everything just with POST and GET? Yes, is it the best approach? No, why? because we have standards methods. If you think again, it would be possible to do everything using just GET.. so why should we even bother do use POST? Because of the standards!
For example, today thinking about a MVC model, you can limit your application to respond just to specific kinds of verbs like POST, GET, PUT and DELETE. Even if under the hood everything is emulated to POST and GET, don't make sense to have different verbs for different actions?
Discovery is far easier in REST. We have WADL documents (similar to WSDL in traditional webservices) that will help you to advertise your service to the world. You can use UDDI discoveries as well. With traditional HTTP POST and GET people may not know your message request and response schemas to call you.
One advantage is that, we can non-sequentially process XML documents and unmarshal XML data from different sources like InputStream object, a URL, a DOM node...
#Timmmm, about your edit :
GET /timeline_posts // could return the N first posts, with links to fetch the next/previous N posts
This would dramatically reduce the number of calls
And nothing prevents you from designing a server that accepts HTTP parameters to denote the field values your clients may want...
But this is a detail.
Much more important is the fact that you did not mention huge advantages of the REST architectural style (much better scalability, due to server statelessness; much better availability, due to server statelessness also; much better use of the standard services, such as caching for instance, when using a REST architectural style; much lower coupling between client and server, due to the use of a uniform interface; etc. etc.)
As for your remark
"Not all actions easily map to CRUD (create, read/retrieve, update,
delete)."
: an RDBMS uses a CRUD approach, too (SELECT/INSERT/DELETE/UPDATE), and there is always a way to represent and act upon a data model.
Regarding your sentence
"You may not even be dealing with object type resources"
: a RESTful design is, by essence, a simple design - but this does NOT mean that designing it is simple. Do you see the difference ? You'll have to think a lot about the concepts your application will represent and handle, what must be done by it, if you prefer, in order to represent this by means of resources. But if you do so, you will end up with a more simple and efficient design.
Query-strings can be ignored by search engines.

Strategy for RESTfully posting many entities

I am still in the process of getting comfortable with doing things the REST way.
In my situation, client software will be interacting with a RESTful service. Rarely, the client will upload its entire database of entities (each entity serializes into a roughly 5kb chunk of xml).
Perhaps I'm wrong, but the proper RESTful strategy seems to be to cycle through each entity and individually POST each one. However, there may plausibly be tens of thousands of these entities, and somehow so many rapid-fire POSTs doesn't seem kosher.
In this situation, it feels like packaging all the entities into one big xml representation would violate the RESTful way of doing things, but it would also avoid the need for thousands of POSTs.
Is there some standard-practice for accomplishing this? Thanks in advance!
I don't see why a "Packet of entities" cannot be considered a resource. Transactional writes certainly can consider database transaction to be a resource. I admit I haven't read Fielding's dissertation, but I don't see how wrapping several resources into a single representation would invalidate REST.
Database transactions do something like this. They will wrap smaller resources inside a transaction resource. It's true that usually they do this so that you can post those smaller resources, that can still be large, separately. But since the transaction itself is considered a resource, I don't believe that coming up with a representation for it that you could post as one POST request would make this design any less RESTful.
It's also used to the other direction. When the client GETs search results from the server, the server might wrap these inside a results resource so that the client can just get this one resource instead of several separate ones.
So I'd say that wrapping these small 5kb resources inside a larger collection resource can be considered RESTful and is probably the way you should go for.
There are at least two problems here which prevent you from being RESTful.
Each resource needs to be identified by a URI. Acting on the resource means that you must call the URI using an HTTP call. Consequently, you cannot call multiple actions in multiple resources in just one HTTP call.
The resources are identified by nouns and represent entities. This implies that to insert an Employee and a Car you need to call two different resources for each of the respective entities.
So in summation you cannot take a purely RESTful approach here. However, REST is designed to help by way of conventions, not constrict you. The best solution here is for you to create a custom action which does what you need.
Alternately, you can create a generic wrapper entity with INSERT, UPDATE and other actions which take in blobs of disparate data as XML. However, this will undermine your other end points because now it becomes possible to insert a Car record through the generic wrapper and through the /Car/ URI.
Without knowing much about your actual requirements, I would suggest you don't expose this functionality via REST specifically. Behind the scenes you could still call your INSERT action methods within the various Controllers once you break up the incoming collection if disparate objects.
As long as the big wrapper has a valid media-type then it is fine to treat it as a single resource. Figuring out what that media-type is going to be is the tricky part.
Nothing prevents you from creating more resources upon addition, aka post a resource that is a list of X to a resource that's a list of X using a POST.
You'd then send back a 201 created with the list of URIS of all resources created. Again, it's all perfectly allowable.
What you loose is the visibility to the intermediaries upon PUT, which prevent them from caching or modifying the specific resource at the specific URI. Although a smart intermediary would process the 201 for caching purposes.
And having one doesn't prevent you from having each created resource have its own URI post-creation (after the POST) and enable PUT / DELETE on those resources. Or a combination.