Working with Swift completion handlers for chained functions - swift

I am chaining some functions together and I can't figure out how to call a completion handler with a return value once all the functions are done running.
class AirQualityProvider {
var aBlock: ((Int?) -> Void)?
func getAirQuality(completion: #escaping (Int?) -> Void) {
aBlock = completion
callAPI()
}
private func callAPI() {
let data = Data()
parseDataForAQI(data: data)
}
private func parseDataForAQI(data: Data) {
for d in data {
dosomeMath(d)
}
}
private func dosomeMath(data: Int) {
// HERE IS WHERE I WANT IT TO SUM UP ALL THE NUMBERS
THEN ONLY RETURN ONE VALUE using a completion handler.
Currently, it returns the average as it is being generated.
}
Almost got it working with help to Alexander. The code Alexander supplied works perfectly, it is amazing. The issue is, when I run taskrunner inside alamofire it returns empty. Outside alamofire it works as usual. I need to run this inside alamofire.
func A(json : JSON){
for (key,subJson) in json{
if subJson["free"].doubleValue > 0.0 {
func B(asset: subJson["asset"].stringValue, json: subJson)
}
}
print(taskRunner.getResults())
}
func B(asset : String, json : JSON){
//OUTSIDE ALAMOFIRE WORKS
self.taskRunner.execute{
return 100
}
Alamofire.request(url).responseJSON { response in
//INSIDE ALAMOFIRE DOESN'T WORK. Returns []
self.taskRunner.execute{
return 100
}
}
}

I would use a dispatch queue to synchronize the aggregation of results (by synchronizing Array.append(_:) calls, and the subsequent reading of the array). Here's a simple example:
import Dispatch
import Foundation
class ParallelTaskRunner<Result> {
private var results = [Result]()
private let group = DispatchGroup()
private let resultAggregatorQueue = DispatchQueue(label: "Result Aggregator")
func execute(_ closure: (#escaping (Result) -> Void) -> Void) {
group.enter() // Register that a new task is in-flight
closure { result in
self.resultAggregatorQueue.sync { // Synchronize access to the array
self.results.append(result) // Record the result
}
self.group.leave() // This task is done
}
}
func getResults() -> [Result] {
group.wait() // Make sure all in-flight tasks are done
return resultAggregatorQueue.sync { return results }
}
}
let taskQueue = DispatchQueue(label: "Task Queue", attributes: .concurrent)
let taskRunner = ParallelTaskRunner<Int>()
for i in 0...100 {
taskRunner.execute { completionHandler in
taskQueue.async { // Simulated async computation
let randomTime = 3.0
print("Sleeping for \(randomTime)")
Thread.sleep(forTimeInterval: randomTime) // Simulates intesnive computation
let result = i // Simulate a result
completionHandler(result)
}
}
}
print(taskRunner.getResults()) // Oh look, all the results are here! :D

Related

MainActor and async await when reading and writing

I understand the new async syntax in Swift in the sense that if I call it, then it will handle a pool of asynchronous queues / threads (whatever) to do the work. What I don't understand is how we return to the main thread once it's all over.
// On main thread now
let manager = StorageManager()
let items = await manager.fetch // returns on main thread?
struct StorageManager {
private func read() throws -> [Item] {
let data = try file.read()
if data.isEmpty { return [] }
return try JSONDecoder().decode([Item].self, from: data)
}
func fetch() async {
fetchAndWait()
}
func fetchAndWait() {
if isPreview { return }
let items = try? read()
fetchedItems = items ?? []
}
func save() throws {
let data = try JSONEncoder().encode(fetchedItems)
try file.write(data)
}
}
I want to make sure that I read and write from/to disk in the correct way i.e. is thread safe when necessary and concurrent where possible. Is it best to declare this struct as a #MainActor ?
There is nothing in the code you've given that uses async or await meaningfully, and there is nothing in the code you've given that goes onto a "background thread", so the question as posed is more or less meaningless. If the question did have meaning, the answer would be: to guarantee that code doesn't run on the main thread, put that code into an actor. To guarantee that code does run on the main thread, put that code into a #MainActor object (or call MainActor.run).
The async methods do not return automatically to the main thread, they either:
complete in the background whatever they are doing
or
explicitly pass at a certain moment the execution to the main thread through a #MainActor function/ class. (edited following #matt's comment)
In the code above you can start by correcting the fact that fetch() does not return any value (items will receive nothing based on your code).
Example of your code for case 1 above:
let manager = StorageManager()
let items = await manager.fetch // not on the main thread, the value will be stored in the background
struct StorageManager {
private func read() throws -> [Item] {
let data = try file.read()
if data.isEmpty { return [] }
return try JSONDecoder().decode([Item].self, from: data)
}
func fetch() async -> [Item] {
if isPreview { return }
let items = try? read()
return items ?? []
}
func save() throws {
let data = try JSONEncoder().encode(fetchedItems)
try file.write(data)
}
}
Example for case 2 above (I created an #Published var, which should only be written on the main thread, to give you the example):
class ViewModel: ObservableObject {
let manager = StorageManager()
#Published var items = [Item]() // should change value only on main thread
func updateItems() {
Task { // Enter background thread
let fetchedItems = await self.manager.fetch()
// Back to main thread
updateItemsWith(fetchedItems)
}
}
#MainActor private func updateItemsWith(newItems: [Item]) {
self.items = newItems
}
}
struct StorageManager {
private func read() throws -> [Item] {
let data = try file.read()
if data.isEmpty { return [] }
return try JSONDecoder().decode([Item].self, from: data)
}
func fetch() async -> [Item] {
if isPreview { return }
let items = try? read()
return items ?? []
}
func save() throws {
let data = try JSONEncoder().encode(fetchedItems)
try file.write(data)
}
}

Swift unit testing view model interface

As I understand, it is best to only test public methods of a class.
Let's have a look at this example. I have a view model for the view controller.
protocol MyViewModelProtocol {
var items: [SomeItem] { get }
var onInsertItemsAtIndexPaths: (([IndexPath]) -> Void)? { get set }
func viewLoaded()
}
class MyViewModel: MyViewModelProtocol {
func viewLoaded() {
let items = createDetailsCellModels()
updateCellModels(with: items)
requestDetails()
}
}
I want to test class viewLoaded(). This class calls two other methods - updateItems() and requestDetails()
One of the methods sets up the items and the other one call API to retrieve data and update those items. Items array us updated two times and onInsertItemsAtIndexPaths are called two times - when setting up those items and when updating with new data.
I can test whether after calling viewLoaded() expected items are set up and that onInsertItemsAtIndexPaths is called.
However, the test method will become rather complex.
What is your view, should I test those two methods separately or just write this one huge test?
By testing only viewLoaded(), my idea is that the implementation can change and I only care that results are what I expect.
I think the same thing, only public functions should be tested, since public ones use private ones, and your view on MVVM is correct. You can improve it by adding a DataSource and a Mapper that allows you to improve testing.
However, yes, the test seems huge to me, the tests should test simple units and ensure that small parts of the code work well, with the example you show is difficult, you need to divide by layers (clean code).
In the example you load the data into the viewModel and make it difficult to mockup the data. But if you have a Domain layer you can pass the UseCase mock to the viewModel and control the result. If you run a test on your example, the result will also depend on what the endpoint returns. (404, 200, empty array, data with error ...). So it is important, for testing purposes, to have a good separation by layers. (Presentation, Domain and Data) to be able to test each one separately.
I give you an example of how I would test a view mode, sure there are better and cooler examples, but it's an approach.
Here you can see a viewModel
protocol BeersListViewModel: BeersListViewModelInput, BeersListViewModelOutput {}
protocol BeersListViewModelInput {
func viewDidLoad()
func updateView()
func image(url: String?, index: Int) -> Cancellable?
}
protocol BeersListViewModelOutput {
var items: Box<BeersListModel?> { get }
var loadingStatus: Box<LoadingStatus?> { get }
var error: Box<Error?> { get }
}
final class DefaultBeersListViewModel {
private let beersListUseCase: BeersListUseCase
private var beersLoadTask: Cancellable? { willSet { beersLoadTask?.cancel() }}
var items: Box<BeersListModel?> = Box(nil)
var loadingStatus: Box<LoadingStatus?> = Box(.stop)
var error: Box<Error?> = Box(nil)
#discardableResult
init(beersListUseCase: BeersListUseCase) {
self.beersListUseCase = beersListUseCase
}
func viewDidLoad() {
updateView()
}
}
// MARK: Update View
extension DefaultBeersListViewModel: BeersListViewModel {
func updateView() {
self.loadingStatus.value = .start
beersLoadTask = beersListUseCase.execute(completion: { (result) in
switch result {
case .success(let beers):
let beers = beers.map { DefaultBeerModel(beer: $0) }
self.items.value = DefaultBeersListModel(beers: beers)
case .failure(let error):
self.error.value = error
}
self.loadingStatus.value = .stop
})
}
}
// MARK: - Images
extension DefaultBeersListViewModel {
func image(url: String?, index: Int) -> Cancellable? {
guard let url = url else { return nil }
return beersListUseCase.image(with: url, completion: { (result) in
switch result {
case .success(let imageData):
self.items.value?.items?[index].image.value = imageData
case .failure(let error ):
print("image error: \(error)")
}
})
}
}
Here you can see the viewModel test using mocks for the data and view.
class BeerListViewModelTest: XCTestCase {
private enum ErrorMock: Error {
case error
}
class BeersListUseCaseMock: BeersListUseCase {
var error: Error?
var expt: XCTestExpectation?
func execute(completion: #escaping (Result<[BeerEntity], Error>) -> Void) -> Cancellable? {
let beersMock = BeersMock.makeBeerListEntityMock()
if let error = error {
completion(.failure(error))
} else {
completion(.success(beersMock))
}
expt?.fulfill()
return nil
}
func image(with imageUrl: String, completion: #escaping (Result<Data, Error>) -> Void) -> Cancellable? {
return nil
}
}
func testWhenAPIReturnAllData() {
let beersListUseCaseMock = BeersListUseCaseMock()
beersListUseCaseMock.expt = self.expectation(description: "All OK")
beersListUseCaseMock.error = nil
let viewModel = DefaultBeersListViewModel(beersListUseCase: beersListUseCaseMock)
viewModel.items.bind { (_) in}
viewModel.updateView()
waitForExpectations(timeout: 10, handler: nil)
XCTAssertNotNil(viewModel.items.value)
XCTAssertNil(viewModel.error.value)
XCTAssert(viewModel.loadingStatus.value == .stop)
}
func testWhenDataReturnsError() {
let beersListUseCaseMock = BeersListUseCaseMock()
beersListUseCaseMock.expt = self.expectation(description: "Error")
beersListUseCaseMock.error = ErrorMock.error
let viewModel = DefaultBeersListViewModel(beersListUseCase: beersListUseCaseMock)
viewModel.updateView()
waitForExpectations(timeout: 10, handler: nil)
XCTAssertNil(viewModel.items.value)
XCTAssertNotNil(viewModel.error.value)
XCTAssert(viewModel.loadingStatus.value == .stop)
}
}
in this way you can test the view, the business logic and the data separately, in addition to being a code that is very reusable.
Hope this helps you, I have it posted on github in case you need it.
https://github.com/cardona/MVVM

Swift Combine: Check if Subject has observer?

In RxSwift we can check if a *Subject has any observer, using hasObserver, how can I do this in Combine on e.g. a PassthroughSubject?
Some time after posting my question I wrote this simple extension. Much simpler than #Asperi's solution. Not sure about disadvantages/advantages between the two solutions besides simplicity (of mine).
private enum CounterChange: Int, Equatable {
case increased = 1
case decreased = -1
}
extension Publisher {
func trackNumberOfSubscribers(
_ notifyChange: #escaping (Int) -> Void
) -> AnyPublisher<Output, Failure> {
var counter = NSNumber.init(value: 0)
let nsLock = NSLock()
func updateCounter(_ change: CounterChange, notify: (Int) -> Void) {
nsLock.lock()
counter = NSNumber(value: counter.intValue + change.rawValue)
notify(counter.intValue)
nsLock.unlock()
}
return handleEvents(
receiveSubscription: { _ in updateCounter(.increased, notify: notifyChange) },
receiveCompletion: { _ in updateCounter(.decreased, notify: notifyChange) },
receiveCancel: { updateCounter(.decreased, notify: notifyChange) }
).eraseToAnyPublisher()
}
}
Here are some tests:
import XCTest
import Combine
final class PublisherTrackNumberOfSubscribersTest: TestCase {
func test_four_subscribers_complete_by_finish() {
doTest { publisher in
publisher.send(completion: .finished)
}
}
func test_four_subscribers_complete_by_error() {
doTest { publisher in
publisher.send(completion: .failure(.init()))
}
}
}
private extension PublisherTrackNumberOfSubscribersTest {
struct EmptyError: Swift.Error {}
func doTest(_ line: UInt = #line, complete: (PassthroughSubject<Int, EmptyError>) -> Void) {
let publisher = PassthroughSubject<Int, EmptyError>()
var numberOfSubscriptions = [Int]()
let trackable = publisher.trackNumberOfSubscribers { counter in
numberOfSubscriptions.append(counter)
}
func subscribe() -> Cancellable {
return trackable.sink(receiveCompletion: { _ in }, receiveValue: { _ in })
}
let cancellable1 = subscribe()
let cancellable2 = subscribe()
let cancellable3 = subscribe()
let cancellable4 = subscribe()
XCTAssertNotNil(cancellable1, line: line)
XCTAssertNotNil(cancellable2, line: line)
XCTAssertNotNil(cancellable3, line: line)
XCTAssertNotNil(cancellable4, line: line)
cancellable1.cancel()
cancellable2.cancel()
complete(publisher)
XCTAssertEqual(numberOfSubscriptions, [1, 2, 3, 4, 3, 2, 1, 0], line: line)
}
}
No one time needed this... Apple does not provide this by API, and, actually, I do not recommend such thing, because it is like manually checking value of retainCount in pre-ARC Objective-C for some decision in code.
Anyway it is possible. Let's consider it as a lab exercise. Hope someone find this helpful.
Disclaimer: below code was not tested with all Publisher(s) and not safe as for some real-world project. It is just approach demo.
So, as there are many kind of publishers and all of them are final and private and, moreover there might be come via type-eraser, we needed generic thing applying to any publisher, thus operator
extension Publisher {
public func countingSubscribers(_ callback: ((Int) -> Void)? = nil)
-> Publishers.SubscribersCounter<Self> {
return Publishers.SubscribersCounter<Self>(upstream: self, callback: callback)
}
}
Operator gives us possibility to inject in any place of of publishers chain and provide interesting value via callback. Interesting value in our case will be count of subscribers.
As operator is injected in both Upstream & Downstream we need bidirectional custom pipe implementation, ie. custom publisher, custom subscriber, custom subscription. In our case they must be transparent, as we don't need to modify streams... actually it will be Combine-proxy.
Posible usage:
1) when SubscribersCounter publisher is last in chain, the numberOfSubscribers property can be used directly
let publisher = NotificationCenter.default
.publisher(for: UIApplication.didBecomeActiveNotification)
.countingSubscribers()
...
publisher.numberOfSubscribers
2) when it somewhere in the middle of the chain, then receive callback about changed subscribers count
let publisher = URLSession.shared
.dataTaskPublisher(for: URL(string: "https://www.google.com")!)
.countingSubscribers({ count in print("Observers: \(count)") })
.receive(on: DispatchQueue.main)
.map { _ in "Data received" }
.replaceError(with: "An error occurred")
Here is implementation:
import Combine
extension Publishers {
public class SubscribersCounter<Upstream> : Publisher where Upstream : Publisher {
private(set) var numberOfSubscribers = 0
public typealias Output = Upstream.Output
public typealias Failure = Upstream.Failure
public let upstream: Upstream
public let callback: ((Int) -> Void)?
public init(upstream: Upstream, callback: ((Int) -> Void)?) {
self.upstream = upstream
self.callback = callback
}
public func receive<S>(subscriber: S) where S : Subscriber,
Upstream.Failure == S.Failure, Upstream.Output == S.Input {
self.increase()
upstream.receive(subscriber: SubscribersCounterSubscriber<S>(counter: self, subscriber: subscriber))
}
fileprivate func increase() {
numberOfSubscribers += 1
self.callback?(numberOfSubscribers)
}
fileprivate func decrease() {
numberOfSubscribers -= 1
self.callback?(numberOfSubscribers)
}
// own subscriber is needed to intercept upstream/downstream events
private class SubscribersCounterSubscriber<S> : Subscriber where S: Subscriber {
let counter: SubscribersCounter<Upstream>
let subscriber: S
init (counter: SubscribersCounter<Upstream>, subscriber: S) {
self.counter = counter
self.subscriber = subscriber
}
deinit {
Swift.print(">> Subscriber deinit")
}
func receive(subscription: Subscription) {
subscriber.receive(subscription: SubscribersCounterSubscription<Upstream>(counter: counter, subscription: subscription))
}
func receive(_ input: S.Input) -> Subscribers.Demand {
return subscriber.receive(input)
}
func receive(completion: Subscribers.Completion<S.Failure>) {
subscriber.receive(completion: completion)
}
typealias Input = S.Input
typealias Failure = S.Failure
}
// own subcription is needed to handle cancel and decrease
private class SubscribersCounterSubscription<Upstream>: Subscription where Upstream: Publisher {
let counter: SubscribersCounter<Upstream>
let wrapped: Subscription
private var cancelled = false
init(counter: SubscribersCounter<Upstream>, subscription: Subscription) {
self.counter = counter
self.wrapped = subscription
}
deinit {
Swift.print(">> Subscription deinit")
if !cancelled {
counter.decrease()
}
}
func request(_ demand: Subscribers.Demand) {
wrapped.request(demand)
}
func cancel() {
wrapped.cancel()
if !cancelled {
cancelled = true
counter.decrease()
}
}
}
}
}

How to chain functions with a completion handler in Swift?

I am chaining some functions together and I can't figure out how to call a completion handler with a return value once all the functions are done running.
func getAirQuality(completion: (aqi: Int?) -> Void) {
callAPI()
}
private func callAPI() {
// ... get data
self.parseDataForAQI(data: data)
}
private func parseDataForAQI(data: Data) {
let aqi = aqi
// Send aqi up to completion handler in getAirQuality
}
So that when everything is said and done I can just do something like this:
getAirQuality(completion: { aqi -> Void in {
// Do something with aqi
})
My first assumption is that your first 3 functions are part of a class. If so, one approach is to save the completion handler as an instance variable.
class AirQualityProvider {
var aBlock: ((Int?) -> Void)?
func getAirQuality(completion: #escaping (Int?) -> Void) {
aBlock = completion
callAPI()
}
private func callAPI() {
let data = Data()
parseDataForAQI(data: data)
}
private func parseDataForAQI(data: Data) {
let aqi = 1
if let completion = aBlock {
completion(aqi)
}
}
}
Here's an example of a caller as written in a playground.
let aqp = AirQualityProvider()
aqp.getAirQuality { (value) in
if let value = value {
print("Value = \(value)")
}
}

Check if on correct dispatch queue in Swift 3

I have a few unit tests in which I'd like to test if a callback is called on the correct dispatch queue.
In Swift 2, I compared the label of the current queue to my test queue. However in Swift 3 the DISPATCH_CURRENT_QUEUE_LABEL constant no longer exists.
I did find the dispatch_assert_queue function. Which seems to be what I need, but I'm not sure how to call it.
My Swift 2 code:
let testQueueLabel = "com.example.my-test-queue"
let testQueue = dispatch_queue_create(testQueueLabel, nil)
let currentQueueLabel = String(UTF8String: dispatch_queue_get_label(DISPATCH_CURRENT_QUEUE_LABEL))!
XCTAssertEqual(currentQueueLabel, testQueueLabel, "callback should be called on specified queue")
Update:
I got confused by the lack of autocomplete, but it is possible to use __dispatch_assert_queue:
if #available(iOS 10.0, *) {
__dispatch_assert_queue(test1Queue)
}
While this does work for unit tests, it annoyingly stops the whole process with a EXC_BAD_INSTRUCTION instead of only failing a test.
Use dispatchPrecondition(.onQueue(expectedQueue)), the Swift 3 API replacement for the dispatch_assert_queue() C API.
This was covered in the WWDC 2016 GCD session (21:00, Slide 128):
https://developer.apple.com/videos/play/wwdc2016/720/
Answering my own question:
Based on KFDoom's comments, I'm now using setSpecific and getSpecific.
This creates a key, sets it on the test queue, and later on, gets it again:
let testQueueLabel = "com.example.my-test-queue"
let testQueue = DispatchQueue(label: testQueueLabel, attributes: [])
let testQueueKey = DispatchSpecificKey<Void>()
testQueue.setSpecific(key: testQueueKey, value: ())
// ... later on, to test:
XCTAssertNotNil(DispatchQueue.getSpecific(key: testQueueKey), "callback should be called on specified queue")
Note that there's no value associated with the key (its type is Void), I'm only interested in the existence of the specific, not in it's value.
Important!
Make sure to keep a reference to the key, or cleanup after you're done using it. Otherwise a newly created key could use the same memory address, leading to weird behaviour. See: http://tom.lokhorst.eu/2018/02/leaky-abstractions-in-swift-with-dispatchqueue
Tests based on KFDoom's answer:
import XCTest
import Dispatch
class TestQueue: XCTestCase {
func testWithSpecificKey() {
let queue = DispatchQueue(label: "label")
let key = DispatchSpecificKey<Void>()
queue.setSpecific(key:key, value:())
let expectation1 = expectation(withDescription: "main")
let expectation2 = expectation(withDescription: "queue")
DispatchQueue.main.async {
if (DispatchQueue.getSpecific(key: key) == nil) {
expectation1.fulfill()
}
}
queue.async {
if (DispatchQueue.getSpecific(key: key) != nil) {
expectation2.fulfill()
}
}
waitForExpectations(withTimeout: 1, handler: nil)
}
func testWithPrecondition() {
let queue = DispatchQueue(label: "label")
let expectation1 = expectation(withDescription: "main")
let expectation2 = expectation(withDescription: "queue")
DispatchQueue.main.async {
dispatchPrecondition(condition: .notOnQueue(queue))
expectation1.fulfill()
}
queue.async {
dispatchPrecondition(condition: .onQueue(queue))
expectation2.fulfill()
}
waitForExpectations(withTimeout: 1, handler: nil)
}
}
One option is to set a precondition to test directly for the queue or set "specific" on it and retrieve it later. Further, one could use setSpecific and getSpecific. Alternatively, you can use a precondition check if you're on a queue so that should fulfill the "get current" need. src: https://github.com/duemunk/Async/blob/feature/Swift_3.0/AsyncTest/AsyncTests.swift
and
https://github.com/apple/swift/blob/master/stdlib/public/SDK/Dispatch/Dispatch.swift
One related option is to set a Main Queue / UI Queue precondition:
dispatchPrecondition(condition: .onQueue(DispatchQueue.main))
/*
Dispatch queue and NSOperations in Swift 3 Xcode 8
*/
protocol Container {
associatedtype ItemType
var count: Int { get }
mutating func pop()
mutating func push(item: ItemType)
mutating func append(item: ItemType)
subscript(i: Int) -> ItemType { get }
}
//Generic Function
struct GenericStack<Element> : Container {
mutating internal func push(item: Element) {
items.append(item)
}
mutating internal func pop() {
items.removeLast()
}
var items = [ItemType]()
internal subscript(i: Int) -> Element {
return items[i]
}
mutating internal func append(item: Element) {
self.push(item: item)
}
internal var count: Int { return items.count }
typealias ItemType = Element
}
var myGenericStack = GenericStack<String>()
myGenericStack.append(item: "Narendra")
myGenericStack.append(item: "Bade")
myGenericStack.count
myGenericStack.pop()
myGenericStack.count
//Some NSOperation
class ExploreOperationAndThread {
func performOperation() {
//Create queue
let queue = OperationQueue()
let operation1 = BlockOperation {
var count = myGenericStack.count
while count > 0 {
myGenericStack.pop()
count -= 1
}
}
operation1.completionBlock = {
print("Operation 1")
}
let operation2 = BlockOperation {
var count = 0
while count == 10 {
myGenericStack.append(item: "ItemAdded")
count += 1
}
}
operation2.completionBlock = {
print("Operation 2")
print(myGenericStack.items)
}
//Suppose operation 3 is related to UI
let operation3 = BlockOperation {
//run on main thread
DispatchQueue.main.async {
print(myGenericStack.items.count)
}
}
operation3.completionBlock = {
print("Operation 3")
print(myGenericStack.items.count)
}
//add operation into queue
queue.addOperation(operation3)
queue.addOperation(operation1)
queue.addOperation(operation2)
//Limit number of concurrent operation in queue
queue.maxConcurrentOperationCount = 1
//add dependancies
operation1.addDependency(operation2)
operation2.addDependency(operation3)
if myGenericStack.items.count == 0 {
//remove dependency
operation1.removeDependency(operation2)
}
}
}
//Other ways of using queues
DispatchQueue.global(qos: .userInitiated).async {
ExploreOperationAndThread().performOperation()
}
DispatchQueue.main.async {
print("I am performing operation on main theread asynchronously")
}
OperationQueue.main.addOperation {
var count = 0
while count == 10 {
myGenericStack.append(item: "Narendra")
count += 1
}
}
DispatchQueue.main.asyncAfter(deadline: .now() + 1.5 , execute: {
ExploreOperationAndThread().performOperation()
})
let queue2 = DispatchQueue(label: "queue2") //Default is serial queue
queue2.async {
print("asynchronously")
}