I have been studying Matlab for hobby.
This is my second question in stack-overflow.
These days I have interest in Sudoku by Matlab.
I got code from internet and I am studying this code for 3 weeks.
I want to add function which indicate how many times 'sub-function(candidates)' executed. -> how many times function works for solution.
I used to use cnt = 0 and cnt=cnt+1 for count(under if statement and while statement)
but i realize this code's structure is loop(??)
*i tried it but cnt were reset when i try, i think i know the reason of reset
but i can't write it code
Thank you for your help
function X = s2(X)
% SUDOKU Solve Sudoku using recursive backtracking.
% sudoku(X), expects a 9-by-9 array X.
% Fill in all ?singletons?.
% C is a cell array of candidate vectors for each cell.
% s is the first cell, if any, with one candidate.
% e is the first cell, if any, with no candidates.
[C,s,e] = candidates(X);
while ~isempty(s) && isempty(e)
X(s) = C{s};
[C,s,e] = candidates(X);
end
% Return for impossible puzzles.
if ~isempty(e)
return
end
% Recursive backtracking.
if any(X(:) == 0)
Y = X;
z = find(X(:) == 0,1); % The first unfilled cell.
for r = [C{z}] % Iterate over candidates.
X = Y;
X(z) = r; % Insert a tentative value.
X = s2(X); % Recursive call.
if all(X(:) > 0) % Found a solution.
return
end
end
end
% ???????????????
function [C,s,e] = candidates(X)
C = cell(9,9);
tri = #(k) 3*ceil(k/3-1) + (1:3);
for j = 1:9
for i = 1:9
if X(i,j)==0
z = 1:9;
z(nonzeros(X(i,:))) = 0;
z(nonzeros(X(:,j))) = 0;
z(nonzeros(X(tri(i),tri(j)))) = 0;
C{i,j} = nonzeros(z)';
end
end
end
L = cellfun(#length,C); % Number of candidates.
s = find(X==0 & L==1,1);
e = find(X==0 & L==0,1);
end % candidates
end % s2
i used variable X
X=[4 0 0 0 2 0 0 0 0;
0 1 0 3 0 0 5 0 0;
0 0 9 0 0 8 0 6 0;
7 0 0 6 0 0 1 0 0;
0 2 0 0 0 0 0 0 9;
0 0 3 0 0 4 0 0 0;
6 0 0 7 0 0 0 2 0;
0 8 0 0 1 0 0 0 4;
0 0 0 0 0 9 3 0 0];
You could also use a persistent variable, which should retain its value across multiple calls of the function.
For example:
function [ result ] = myfactorial( num )
% using persistent variable based on
% https://www.mathworks.com/help/matlab/ref/persistent.html
persistent numcalls;
if isempty(numcalls)
numcalls = 0;
end
numcalls = numcalls+1;
disp(strcat('numcalls is now: ', int2str(numcalls)));
% factorial function based on
% https://www.quora.com/How-can-I-create-a-factorial-function-in-MATLAB
if num > 1
result = myfactorial(num-1)*num;
else
result = 1;
end
end
Now call the function.
clear all;
result = myfactorial(5);
The output is:
numcalls is now:1
numcalls is now:2
numcalls is now:3
numcalls is now:4
numcalls is now:5
Related
I have a 2D matrix composed of ones and zeros.
mat = [0 0 0 0 1 1 1 0 0
1 1 1 1 1 0 0 1 0
0 0 1 0 1 1 0 0 1];
I need to find all consecutive repetitions of ones in each row and replace all ones with zeros only when the sequence size is smaller than 5 (5 consecutive ones):
mat = [0 0 0 0 0 0 0 0 0
1 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0];
Any suggestion on how to approach this problem would be very welcome.
You can use diff to find the start and end points of the runs of 1, and some logic based on that to zero out the runs which are too short. Please see the below code with associated comments
% Input matrix of 0s and 1s
mat = [0 0 0 0 1 1 1 0 0
1 1 1 1 1 0 0 1 0
0 0 1 0 1 1 0 0 1];
% Minimum run length of 1s to keep
N = 5;
% Get the start and end points of the runs of 1. Add in values from the
% original matrix to ensure that start and end points are always paired
d = [mat(:,1),diff(mat,1,2),-mat(:,end)];
% Find those start and end points. Use the transpose during the find to
% flip rows/cols and search row-wise relative to input matrix.
[cs,r] = find(d.'>0.5); % Start points
[ce,~] = find(d.'<-0.5); % End points
c = [cs, ce]; % Column number array for start/end
idx = diff(c,1,2) < N; % From column number, check run length vs N
% Loop over the runs which didn't satisfy the threshold and zero them
for ii = find(idx.')
mat(r(ii),c(ii,1):c(ii,2)-1) = 0;
end
If you want to throw legibility out of the window, this can be condensed for a slightly faster and denser version, based on the exact same logic:
[c,r] = find([mat(:,1),diff(mat,1,2),-mat(:,end)].'); % find run start/end points
for ii = 1:2:numel(c) % Loop over runs
if c(ii+1)-c(ii) < N % Check if run exceeds threshold length
mat(r(ii),c(ii):c(ii+1)-1) = 0; % Zero the run if not
end
end
The vectorized solution by #Wolfie is nice and concise, but a bit hard to understand and far from the wording of the problem. Here is a direct translation of the problem using loops. It has the advantage of being easier to understand and is slightly faster with less memory allocations, which means it will work for huge inputs.
[m,n] = size(mat);
for i = 1:m
j = 1;
while j <= n
seqSum = 1;
if mat(i,j) == 1
for k = j+1:n
if mat(i,k) == 1
seqSum = seqSum + 1;
else
break
end
end
if seqSum < 5
mat(i,j:j+seqSum-1) = 0;
end
end
j = j + seqSum;
end
end
I am writing a function in Matlab to model the length of stay in hospital of stroke patients. I am having difficulty in storing my output values.
Here is my function:
function [] = losdf(age, strokeType, dest)
% function to mdetermine length of stay in hospitaal of stroke patients
% t = time since admission (days);
% age = age of patient;
% strokeType = 1. Haemorhagic, 2. Cerebral Infarction, 3. TIA;
% dest = 5.Death 6.Nursing Home 7. Usual Residence;
alpha1 = 6.63570;
beta1 = -0.03652;
alpha2 = -3.06931;
beta2 = 0.07153;
theta0 = -8.66118;
theta1 = 0.08801;
mu1 = 22.10156;
mu2 = 2.48820;
mu3 = 1.56162;
mu4 = 0;
nu1 = 0;
nu2 = 0;
nu3 = 1.27849;
nu4 = 0;
rho1 = 0;
rho2 = 11.76860;
rho3 = 3.41989;
rho4 = 63.92514;
for t = 1:1:365
p = (exp(-exp(theta0 + (theta1.*age))));
if strokeType == 1
initialstatevec = [1 0 0 0 0 0 0];
elseif strokeType == 2
initialstatevec = [0 1 0 0 0 0 0];
else
initialstatevec = [0 0 (1-p) p 0 0 0];
end
lambda1 = exp(alpha1 + (beta1.*age));
lambda2 = exp(alpha2 + (beta2.*age));
Q = [ -(lambda1+mu1+nu1+rho1) lambda1 0 0 mu1 nu1 rho1;
0 -(lambda2+mu2+nu2+rho2) lambda2 0 mu2 nu2 rho2;
0 0 -(mu3+nu3+rho3) 0 mu3 nu3 rho3;
0 0 0 -(mu4+nu4+rho4) mu4 nu4 rho4;
0 0 0 0 0 0 0;
0 0 0 0 0 0 0;
0 0 0 0 0 0 0];
Pt = expm(t./365.*Q);
Pt = Pt(strokeType, dest);
Ft = sum(initialstatevec.*Pt);
Ft
end
end
Then to run my function I use:
losdf(75,3,7)
I want to plot my values of Ft in a graph from from 0 to 365 days. What is the best way to do this?
Do I need to store the values in an array first and if so what is the best way to do this?
Many ways to do this, one straightforward way is to save each data point to a vector while in the loop and plot that vector after you exit your loop.
...
Ft = zeros(365,1); % Preallocate Ft as a vector of 365 zeros
for t = 1:365
...
Ft(t) = sum(initialstatevec.*Pt); % At index "t", store your output
...
end
plot(1:365,Ft);
I am trying to make a parity check matrix from non-systematic to systematic. Hence, I am attaching my code below. Somewhat it is correct, but there are some problems. It would be really great if someone could help me in this.
Subject: Information theory and coding. I am working on LDPC coding and decoding. Please check the code below
MATLAB CODE:
H = [1 0 1 1 0; 0 0 1 0 1; 1 0 0 1 0; 1 0 1 1 1]
[m,n] = size(H);
k = n-m;
for i = k+1:n
%H(:,i)
ind = find(H(:,i),1,'last');
% exchanging (ind)th row and (i-k)th row
if ind < i-k
continue;
end
if ind ~= i-k
temp = H(ind,:);
H(ind,:) = H(i-k,:);
H(i-k,:) = temp;
end
I = find(H(:,i));
% Guassian elimination
for j = 1:length(I)
if I(j) ~= i-k
H(I(j),:) = mod(H(I(j),:)+H(i-k,:),2);
end
end
end
Hsys = H
For e.g.
This is my H matrix:
H =
1 0 1 1 0
0 0 1 0 1
1 0 0 1 0
1 0 1 1 1
I want to have an identity matrix inside the matrix. The dimension on H matrix here is (mxn) which is (4x5).
Generally we use Gaussian elimination method to make the Identity matrix.hence, we make operations between rows. This is how we make it systematic.
I should have matrix as this in the result:
Hsys =
0 1 0 0 0
0 0 1 0 0
1 0 0 1 0
0 0 0 0 1
I should have an identity matrix of dimension m.
Here is how I'd do it (using Gauss-Jordan elimination):
% Not your matrix since it does not have any ones in the second column.
H=[1 1 0 1 1 0 0 1 0 0;
0 1 1 0 1 1 1 0 0 0;
0 0 0 1 0 0 0 1 1 1;
1 1 0 0 0 1 1 0 1 0;
0 0 1 0 0 1 0 1 0 1];
rows = size(H, 1);
cols = size(H, 2);
r = 1;
for c = cols - rows + 1:cols
if H(r,c) == 0
% Swap needed
for r2 = r + 1:rows
if H(r2,c) ~= 0
tmp = H(r, :);
H(r, :) = H(r2, :);
H(r2, :) = tmp;
end
end
end
% Ups...
if H(r,c) == 0
error('H is singular');
end
% Forward substitute
for r2 = r + 1:rows
if H(r2, c) == 1
H(r2, :) = xor(H(r2, :), H(r, :));
end
end
% Back Substitution
for r2 = 1:r - 1
if H(r2, c) == 1
H(r2, :) = xor(H(r2, :), H(r, :));
end
end
% Next row
r = r + 1;
end
I have some code below, and I cant seem to get the matrices formatted correctly. I have been trying to get the matrices to look more professional (close together) with \t and fprintf, but cant seem to do so. I am also having some trouble putting titles for each columns of the matrix. Any help would be much appreciated!
clear all
clc
format('bank')
% input file values %
A = [4 6 5 1 0 0 0 0 0; 7 8 4 0 1 0 0 0 0; 6 5 9 0 0 1 0 0 0; 1 0 0 0 0 0 -1 0 0; 0 1 0 0 0 0 0 -1 0; 0 0 1 0 0 0 0 0 -1];
b = [480; 600; 480; 24; 20; 25];
c = [3000 4000 4000 0 0 0 0 0 0];
% Starting xb %
xb = [1 2 3 4 5 6]
% Starting xn %
xn = [7 8 9]
cb = c(xb)
cn = c(xn)
% Get B from A %
B = A(:,xb)
% Get N from A %
N = A(:,xn)
% Calculate z %
z = ((cb*(inv(B))*A)-c)
% Calculate B^(-1) %
Binv = inv(B)
% Calculate RHS of row 0 %
RHS0 = cb*Binv*b
% Calculates A %
A = Binv*A
%STARTING Tableau%
ST = [z RHS0;A b]
for j=1:A
fprintf(1,'\tz%d',j)
end
q = 0
while q == 0
m = input('what is the index value of the ENTERING variable? ')
n = input('what is the index value of the LEAVING variable? ')
xn(xn==m)= n
xb(xb==n) = m
cb = c(xb)
cn = c(xn)
B = A(:,xb)
N = A(:,xn)
Tableuz = (c-(cb*(B^(-1))*A))
RHS0 = (cb*(B^(-1))*b)
TableuA = ((B^(-1))*A)
Tableub = ((B^(-1))*b)
CT = [Tableuz RHS0; TableuA Tableub];
disp(CT)
q = input('Is the tableau optimal? Y-1, N-0')
end
I didn't dig into what you are doing really deeply, but a few pointers:
* Put semicolons at the end of lines you don't want printing to the screen--it makes it easier to see what is happening elsewhere.
* Your for j=1:A loop only prints j. I think what you want is more like this:
for row = 1:size(A,1)
for column = 1:size(A,2)
fprintf('%10.2f', A(row,column));
end
fprintf('\n');
end
If you haven't used the Matlab debugger yet, give it a try; it makes a lot of these problems easier to spot. All you have to do to start it is to add a breakpoint to the file by clicking on the dash(-) next to the line numbers and starting the script. Quick web searches can turn up the solution very quickly too--someone else has usually already had any problem you're going to run into.
Good luck.
Try using num2str with a format argument of your desired precision. It's meant for converting matrices to strings. (note: this is different than mat2str which serializes matrices so they can be deserialized with eval)
I want to generate a matrix that is "stairsteppy" from a vector.
Example input vector: [8 12 17]
Example output matrix:
[1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1]
Is there an easier (or built-in) way to do this than the following?:
function M = stairstep(v)
M = zeros(length(v),max(v));
v2 = [0 v];
for i = 1:length(v)
M(i,(v2(i)+1):v2(i+1)) = 1;
end
You can do this via indexing.
A = eye(3);
B = A(:,[zeros(1,8)+1, zeros(1,4)+2, zeros(1,5)+3])
Here's a solution without explicit loops:
function M = stairstep(v)
L = length(v); % M will be
V = max(v); % an L x V matrix
M = zeros(L, V);
% create indices to set to one
idx = zeros(1, V);
idx(v + 1) = 1;
idx = cumsum(idx) + 1;
idx = sub2ind(size(M), idx(1:V), 1:V);
% update the output matrix
M(idx) = 1;
EDIT: fixed bug :p
There's no built-in function I know of to do this, but here's one vectorized solution:
v = [8 12 17];
N = numel(v);
M = zeros(N,max(v));
M([0 v(1:N-1)]*N+(1:N)) = 1;
M(v(1:N-1)*N+(1:N-1)) = -1;
M = cumsum(M,2);
EDIT: I like the idea that Jonas had to use BLKDIAG. I couldn't help playing with the idea a bit until I shortened it further (using MAT2CELL instead of ARRAYFUN):
C = mat2cell(ones(1,max(v)),1,diff([0 v]));
M = blkdiag(C{:});
A very short version of a vectorized solution
function out = stairstep(v)
% create lists of ones
oneCell = arrayfun(#(x)ones(1,x),diff([0,v]),'UniformOutput',false);
% create output
out = blkdiag(oneCell{:});
You can use ones to define the places where you have 1's:
http://www.mathworks.com/help/techdoc/ref/ones.html