I am running OLS regressions on time series data (interest rate swap spreads). I have run the regressions with Newey-West standard errors to deal with both autocorrelation and Heteroskedasticity.
My question is: is this enough to ensure my model is appropriate from a hypothesis testing standpoint? Or do I need to use first differences as well (since the data is not stationary)?
Thank you.
Related
I'm using recusive least squares (RLS) to identify system parameters for a dynamical system. The RLS algorithm is implemented in discrete time, while the real system is continuous. In practice this is easily done, but how can I simulate these two together? A sequential solution doesn't help, since I want to use the RLS estimate to influence the system input.
The built-in event-triggering can only stop integration, if I got that right. Thus, I'd have to stop at each sampling point of the RLS algorithm and then solve the ode between samples. -> How is this implemented in Simulink?
The only real solution I found was to implement my own RK45 with adaptive step size. It is designed to take discrete and continuous systems (ode and difference equations) and solves with adaptive step size until a new sample has to be taken. This method works like a charm - with slow dynamics only the discrete points are sampled for sufficiently small sampling times and fast dynamics yield small integration step sizes, as expected!
Also the implementation was way less effort than expected and compares surprisingly well to matlabs ode45, ie. lower computational cost, higher accuracy, less oscillations after discrete jumps in the ode!
I have a question regarding cross validation in Linear regression model.
From my understanding, in cross validation, we split the data into (say) 10 folds and train the data from 9 folds and the remaining folds we use for testing. We repeat this process until we test all of the folds, so that every folds are tested exactly once.
When we are training the model from 9 folds, should we not get a different model (may be slightly different from the model that we have created when using the whole dataset)? I know that we take an average of all the "n" performances.
But, what about the model? Shouldn't the resulting model also be taken as the average of all the "n" models? I see that the resulting model is same as the model which we created using whole of the dataset before cross-validation. If we are considering the overall model even after cross-validation (and not taking avg of all the models), then what's the point of calculating average performance from n different models (because they are trained from different folds of data and are supposed to be different, right?)
I apologize if my question is not clear or too funny.
Thanks for reading, though!
I think that there is some confusion in some of the answers proposed because of the use of the word "model" in the question asked. If I am guessing correctly, you are referring to the fact that in K-fold cross-validation we learn K-different predictors (or decision functions), which you call "model" (this is a bad idea because in machine learning we also do model selection which is choosing between families of predictors and this is something which can be done using cross-validation). Cross-validation is typically used for hyperparameter selection or to choose between different algorithms or different families of predictors. Once these chosen, the most common approach is to relearn a predictor with the selected hyperparameter and algorithm from all the data.
However, if the loss function which is optimized is convex with respect to the predictor, than it is possible to simply average the different predictors obtained from each fold.
This is because for a convex risk, the risk of the average of the predictor is always smaller than the average of the individual risks.
The PROs and CONs of averaging (vs retraining) are as follows
PROs: (1) In each fold, the evaluation that you made on the held out set gives you an unbiased estimate of the risk for those very predictors that you have obtained, and for these estimates the only source of uncertainty is due to the estimate of the empirical risk (the average of the loss function) on the held out data.
This should be contrasted with the logic which is used when you are retraining and which is that the cross-validation risk is an estimate of the "expected value of the risk of a given learning algorithm" (and not of a given predictor) so that if you relearn from data from the same distribution, you should have in average the same level of performance. But note that this is in average and when retraining from the whole data this could go up or down. In other words, there is an additional source of uncertainty due to the fact that you will retrain.
(2) The hyperparameters have been selected exactly for the number of datapoints that you used in each fold to learn. If you relearn from the whole dataset, the optimal value of the hyperparameter is in theory and in practice not the same anymore, and so in the idea of retraining, you really cross your fingers and hope that the hyperparameters that you have chosen are still fine for your larger dataset.
If you used leave-one-out, there is obviously no concern there, and if the number of data point is large with 10 fold-CV you should be fine. But if you are learning from 25 data points with 5 fold CV, the hyperparameters for 20 points are not really the same as for 25 points...
CONs: Well, intuitively you don't benefit from training with all the data at once
There are unfortunately very little thorough theory on this but the following two papers especially the second paper consider precisely the averaging or aggregation of the predictors from K-fold CV.
Jung, Y. (2016). Efficient Tuning Parameter Selection by Cross-Validated Score in High Dimensional Models. International Journal of Mathematical and Computational Sciences, 10(1), 19-25.
Maillard, G., Arlot, S., & Lerasle, M. (2019). Aggregated Hold-Out. arXiv preprint arXiv:1909.04890.
The answer is simple: you use the process of (repeated) cross validation (CV) to obtain a relatively stable performance estimate for a model instead of improving it.
Think of trying out different model types and parametrizations which are differently well suited for your problem. Using CV you obtain many different estimates on how each model type and parametrization would perform on unseen data. From those results you usually choose one well suited model type + parametrization which you will use, then train it again on all (training) data. The reason for doing this many times (different partitions with repeats, each using different partition splits) is to get a stable estimation of the performance - which will enable you to e.g. look at the mean/median performance and its spread (would give you information about how well the model usually performs and how likely it is to be lucky/unlucky and get better/worse results instead).
Two more things:
Usually, using CV will improve your results in the end - simply because you take a model that is better suited for the job.
You mentioned taking the "average" model. This actually exists as "model averaging", where you average the results of multiple, possibly differently trained models to obtain a single result. Its one way to use an ensemble of models instead of a single one. But also for those you want to use CV in the end for choosing reasonable model.
I like your thinking. I think you have just accidentally discovered Random Forest:
https://en.wikipedia.org/wiki/Random_forest
Without repeated cv your seemingly best model is likely to be only a mediocre model when you score it on new data...
I have gone through neural networks and have understood the derivation for back propagation almost perfectly(finally!). However, I had a small doubt.
We are updating all the weights simultaneously, so what is the guarantee that they lead to a smaller cost. If the weights are updated one by one, it would definitely lead to a lesser cost and it would be similar to linear regression. But if you update all the weights simultaneously, might we not cross the minima?
Also, do we update the biases like we update the weights after each forward propagation and back propagation of each test case?
Lastly, I have started reading on RNN's. What are some good resources to understand BPTT in RNN's?
Yes, updating only one weight at the time could result in decreasing error value every time but it's usually infeasible to do such updates in practical solutions using NN. Most of today's architectures usually have ~ 10^6 parameters so one epoch for every parameter could last enormously long. Moreover - because of nature of backpropagation - you usually have to compute loads of different derivatives in order to compute derivative with respect to a parameter given - so you will waste a lot of computations when using such approach.
But the phenomenon which you mention has been noticed a long time ago and there are some ways in dealing with it. There are two most common issues connected with it:
Covariance shift: it's when error and weight updates of a layer given strongly depends on output from previous layer, so when you update it - the results in the next layer might be different. The most common way to deal with this problem right now is Batch normalization.
Nolinear function vs Linear Differentation: it's quite uncommon when you think about BP but derivative is a linear operator which might generate a lot of problems in gradient descent. The most countintuitive example is the fact that if you multiply your input by a constant then every derivative will also be multiplied by the same number. This may lead to a lot of problems but most of recent methods of learning do a great job in dealing with it.
About BPTT I stronly recomend you Geoffrey Hinton course about ANN and especially this video.
I have run ANN in matlab for prediction a variable based on several response variables.ALL variables have numerical values.I could not get a desirable results although I changed hidden neuron several times many runs of the model and so on.My question is should I use transformation of the input variables to get a better results?how can I know that which transformation I should choos?Thanks for any help.
I strongly advise you to use some methods from time series analysis like lagged correlation or window lagged correlation (with statistical tests). You can find it in most of statistical packages (e.g. in R). From one small picture it's hard to deduce whether your prediction is lagged or not. Testing huge amount of data can help you in revealing true dependencies and avoid trusting in spurious correlations.
I have a question regarding the Matlab NN toolbox. As a part of research project I decided to create a Matlab script that uses the NN toolbox for some fitting solutions.
I have a data stream that is being loaded to my system. The Input data consists of 5 input channels and 1 output channel. I train my data on on this configurations for a while and try to fit the the output (for a certain period of time) as new data streams in. I retrain my network constantly to keep it updated.
So far everything works fine, but after a certain period of time the results get bad and do not represent the desired output. I really can't explain why this happens, but i could imagine that there must be some kind of memory issue, since as the data set is still small, everything is ok.
Only when it gets bigger the quality of the simulation drops down. Is there something as a memory which gets full, or is the bad sim just a result of the huge data sets? I'm a beginner with this tool and will really appreciate your feedback. Best Regards and thanks in advance!
Please elaborate on your method of retraining with new data. Do you run further iterations? What do you consider as "time"? Do you mean epochs?
At a first glance, assuming time means epochs, I would say that you're overfitting the data. Neural Networks are supposed to be trained for a limited number of epochs with early stopping. You could try regularization, different gradient descent methods (if you're using a GD method), GD momentum. Also depending on the values of your first few training datasets, you may have trained your data using an incorrect normalization range. You should check these issues out if my assumptions are correct.