pytorch: zero_grad vs zero_grad() - role of parenthesis? - neural-network

I'm trying to train a pytorch model as follows:
start = time.time()
for epoch in range(100):
t_loss = 0
for i in range(100):
optimizer.zero_grad
scores = my_model(sent_dict_list[i])
scores = scores.permute(0, 2, 1)
loss = loss_function(scores, torch.tensor(targ_list[i]).cuda())
t_loss += loss.item()
loss.backward()
optimizer.step()
print("t_loss = ", t_loss)
I find that when I call "optimizer.zero_grad" my loss decreases at the end of every epoch whereas when I call "optimizer.zero_grad()" with the parenthesis it stays almost exactly the same. I don't know what difference this makes and was hoping someone could explain it to me.

I assume you're new to python, the '()' means simple a function call.
Consider this example:
>>> def foo():
print("function")
>>> foo
<function __main__.foo>
>>> foo()
function
Remember functions are objects in python, you can even store them like this:
>>> [foo, foo, foo]
Returning to your question, you have to call the function otherwise it won't work.

Related

How to write a flexible multiple exponential fit

I'd like to write a more or less universial fit function for general function
$f_i = \sum_i a_i exp(-t/tau_i)$
for some data I have.
Below is an example code for a biexponential function but I would like to be able to fit a monoexponential or a triexponential function with the smallest code adaptions possible.
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import numpy as np
from scipy.optimize import curve_fit
import matplotlib.pyplot as plt
t = np.linspace(0, 10, 100)
a_1 = 1
a_2 = 1
tau_1 = 5
tau_2 = 1
data = 1*np.exp(-t/5) + 1*np.exp(-t/1)
data += 0.2 * np.random.normal(size=t.size)
def func(t, a_1, tau_1, a_2, tau_2): # plus more exponential functions
return a_1*np.exp(-t/tau_1)+a_2*np.exp(-t/tau_2)
popt, pcov = curve_fit(func, t, data)
print(popt)
plt.plot(t, data, label="data")
plt.plot(t, func(t, *popt), label="fit")
plt.legend()
plt.show()
In principle I thought of redefining the function to a general form
def func(t, a, tau): # with a and tau as a list
tmp = 0
tmp += a[i]*np.exp(-t/tau[i])
return tmp
and passing the arguments to curve_fit in the form of lists or tuples. However I get a TypeError as shown below.
TypeError: func() takes 4 positional arguments but 7 were given
Is there anyway to rewrite the code that you can only by the input parameters of curve_fit "determine" the degree of the multiexponential function? So that passing
a = (1)
results in a monoexponential function whereas passing
a = (1, 2, 3)
results in a triexponential function?
Regards
Yes, that can be done easily with np.broadcasting:
def func(t, a, taus): # plus more exponential functions
a=np.array(a)[:,None]
taus=np.array(taus)[:,None]
return (a*np.exp(-t/taus)).sum(axis=0)
func accepts 2 lists, converts them into 2-dim np.array, computes a matrix with all the exponentials and then sums it up. Example:
t=np.arange(100).astype(float)
out=func(t,[1,2],[0.3,4])
plt.plot(out)
Keep in mind a and taus must be the same length, so sanitize your inputs as you see fit. Or you could also directly pass np.arrays instead of lists.

Can operations on a numpy.memmap be deferred?

Consider this example:
import numpy as np
a = np.array(1)
np.save("a.npy", a)
a = np.load("a.npy", mmap_mode='r')
print(type(a))
b = a + 2
print(type(b))
which outputs
<class 'numpy.core.memmap.memmap'>
<class 'numpy.int32'>
So it seems that b is not a memmap any more, and I assume that this forces numpy to read the whole a.npy, defeating the purpose of the memmap. Hence my question, can operations on memmaps be deferred until access time?
I believe subclassing ndarray or memmap could work, but don't feel confident enough about my Python skills to try it.
Here is an extended example showing my problem:
import numpy as np
# create 8 GB file
# np.save("memmap.npy", np.empty([1000000000]))
# I want to print the first value using f and memmaps
def f(value):
print(value[1])
# this is fast: f receives a memmap
a = np.load("memmap.npy", mmap_mode='r')
print("a = ")
f(a)
# this is slow: b has to be read completely; converted into an array
b = np.load("memmap.npy", mmap_mode='r')
print("b + 1 = ")
f(b + 1)
Here's a simple example of an ndarray subclass that defers operations on it until a specific element is requested by indexing.
I'm including this to show that it can be done, but it almost certainly will fail in novel and unexpected ways, and require substantial work to make it usable.
For a very specific case it may be easier than redesigning your code to solve the problem in a better way.
I'd recommend reading over these examples from the docs to help understand how it works.
import numpy as np
class Defered(np.ndarray):
"""
An array class that deferrs calculations applied to it, only
calculating them when an index is requested
"""
def __new__(cls, arr):
arr = np.asanyarray(arr).view(cls)
arr.toApply = []
return arr
def __array_ufunc__(self, ufunc, method, *inputs, **kwargs):
## Convert all arguments to ndarray, otherwise arguments
# of type Defered will cause infinite recursion
# also store self as None, to be replaced later on
newinputs = []
for i in inputs:
if i is self:
newinputs.append(None)
elif isinstance(i, np.ndarray):
newinputs.append(i.view(np.ndarray))
else:
newinputs.append(i)
## Store function to apply and necessary arguments
self.toApply.append((ufunc, method, newinputs, kwargs))
return self
def __getitem__(self, idx):
## Get index and convert to regular array
sub = self.view(np.ndarray).__getitem__(idx)
## Apply stored actions
for ufunc, method, inputs, kwargs in self.toApply:
inputs = [i if i is not None else sub for i in inputs]
sub = super().__array_ufunc__(ufunc, method, *inputs, **kwargs)
return sub
This will fail if modifications are made to it that don't use numpy's universal functions. For instance percentile and median aren't based on ufuncs, and would end up loading the entire array. Likewise, if you pass it to a function that iterates over the array, or applies an index to substantial amounts the entire array will be loaded.
This is just how python works. By default numpy operations return a new array, so b never exists as a memmap - it is created when + is called on a.
There's a couple of ways to work around this. The simplest is to do all operations in place,
a += 1
This requires loading the memory mapped array for reading and writing,
a = np.load("a.npy", mmap_mode='r+')
Of course this isn't any good if you don't want to overwrite your original array.
In this case you need to specify that b should be memmapped.
b = np.memmap("b.npy", mmap+mode='w+', dtype=a.dtype, shape=a.shape)
Assigning can be done by using the out keyword provided by numpy ufuncs.
np.add(a, 2, out=b)

scipy.optimize failure with a "vectorized" implementation

I have an optimization problem (1d) coded in 2 ways - one using a for loop and an other using numpy arrays. The for loop version works fine but the numpy one fails.
Actually it is a bit more complicated, it can work with different starting points (!!) or if I choose an other optimization algo like CG.
The 2 versions (functions and gradients) are giving the same results and the returned types are also the same as far as I can tell.
Here is my example, what am I missing?
import numpy as np
from scipy.optimize import minimize
# local params
v1 = np.array([1., 1.])
v2 = np.array([1., 2.])
# local functions
def f1(x):
s = 0
for i in range(len(v1)):
s += (v1[i]*x-v2[i])**2
return 0.5*s/len(v1)
def df1(x):
g = 0
for i in range(len(v1)):
g += v1[i]*(v1[i]*x-v2[i])
return g/len(v1)
def f2(x):
return 0.5*np.sum((v1*x-v2)**2)/len(v1)
def df2(x):
return np.sum(v1*(v1*x-v2))/len(v1)
x0 = 10. # x0 = 2 works
# tests...
assert np.abs(f1(x0)-f2(x0)) < 1.e-6 and np.abs(df1(x0)-df2(x0)) < 1.e-6 \
and np.abs((f1(x0+1.e-6)-f1(x0))/(1.e-6)-df1(x0)) < 1.e-4
# BFGS for f1: OK
o = minimize(f1, x0, method='BFGS', jac=df1)
if not o.success:
print('FAILURE', o)
else:
print('SUCCESS min = %f reached at %f' % (f1(o.x[0]), o.x[0]))
# BFGS for f2: failure
o = minimize(f2, x0, method='BFGS', jac=df2)
if not o.success:
print('FAILURE', o)
else:
print('SUCCESS min = %f reached at %f' % (f2(o.x[0]), o.x[0]))
The error I get is
A1 = I - sk[:, numpy.newaxis] * yk[numpy.newaxis, :] * rhok
IndexError: invalid index to scalar variable.
but I doesn't really helps me since it can work with some other starting values.
I am using an all new fresh python install (python 3.5.2, scipy 0.18.1 and numpy 1.11.3).
The solver expects the return value of jacobian df2 to be the same shape as its input x. Even though you passed in a scalar here, it's actually converted into a single element ndarray. Since you used np.sum, your result became scalar and that causes strange things to happen.
Enclose the scalar result of df2 with np.array, and your code should work.

Scala lazy val caching

In the following example:
def maybeTwice2(b: Boolean, i: => Int) = {
lazy val j = i
if (b) j+j else 0
}
Why is hi not printed twice when I call it like:
maybeTwice2(true, { println("hi"); 1+41 })
This example is actually from the book "Functional Programming in Scala" and the reason given as why "hi" not getting printed twice is not convincing enough for me. So just thought of asking this here!
So i is a function that gives an integer right? When you call the method you pass b as true and the if statement's first branch is executed.
What happens is that j is set to i and the first time it is later used in a computation it executes the function, printing "hi" and caching the resulting value 1 + 41 = 42. The second time it is used the resulting value is already computed and hence the function returns 84, without needing to compute the function twice because of the lazy val j.
This SO answer explores how a lazy val is internally implemented. In j + j, j is a lazy val, which amounts to a function which executes the code you provide for the definition of the lazy val, returns an integer and caches it for further calls. So it prints hi and returns 1+41 = 42. Then the second j gets evaluated, and calls the same function. Except this time, instead of running your code, it fetches the value (42) from the cache. The two integers are then added (returning 84).

Evaluate function in Matlab

I am trying to evaluate the function in t = 1 in Matlab.
How can I get an answer to the following code ?
result = dsolve('D2y-23*Dy+22*y=sin(t)','y(0)=0','Dy(0)=0');
disp(result);
disp(fnval(result, 1));
The first answer is: exp(22*t)/10185 + (23*cos(t))/970 - exp(t)/42 + (21*sin(t))/970.
But when I am trying to find the evaluation of the function in the point t =1, the progrem is throwing some exception. Maybe the 'fnval' function is not suitable for here.
You can use subs.
result = dsolve('D2y-23*Dy+22*y=sin(t)','y(0)=0','Dy(0)=0');
t = 1;
subs(result)
ans =
3.5198e+005
You could also do it using eval, which is similar to your initial approach:
eval(result)
after assigning a value to t.
You can evaluate the function for a number range, using eval together with vectorize:
t = -0.1:0.01:0.1;
plot(t,eval(vectorize(result)))
This gives: