Pass functor to compile-command - forms

I've created my own elisp function which calculates the compile-command string each time I want to compile a whole project (which has usually a makefile in the root of the project's directory tree) or a single file (which usually has no makefile and uses the make's implicit rules).
It allows me to find automatically the location of a recently created, renamed or moved makefile in the directory tree of a project, without having to close and reopen the editor to reload the file-local variables at the beginning of a project.
The Emacs' compile function implementation uses the expression (let ((command (eval compile-command))) body) in case compile-command is bound to a form (for instance, compilation-read-command, as stated in the compile-command documentation).
I want to take adventage of this to get a dynamic compile-command string, but I don't know how to create those "forms" encapsulating a function call, as required by eval. All the examples I've found in the emacs-lisp documentation about eval use simple variables, not function captures.
I've tried with something simple as (setq-default compile-command 'my-compile-command-fun), but of course it didn't work.
my-compile-command-fun has no parameters.

ELISP> (defun foo () "bar")
foo
ELISP> (foo)
"bar"
ELISP> (eval '(foo))
"bar"
Therefore you presumably wanted this:
(setq-default compile-command '(my-compile-command-fun))

Related

undefined operator after quickload lisp

The function find-data-from-command works fine when I run it without first doing the 'quickload' of the package. If I load the package it gives the error that split-sequence is undefined.
I have tried to reload split-sequence after loading the custom package. Doesn't work
(ql:quickload :<a-custom-package>)
(defun find-data-from-command (x desired-command)
(setq desired-data ())
(loop for line = (read-line x nil)
while (and line (not desired-data)) do
(progn
(setq commands (first (split-sequence ":" line)))
(setq data (split-sequence "," (first (rest (split-sequence ":" line)))))
(print (cons "command:" commands))
(cond
((equal commands desired-command) (return-from find-data-from-command data))))))
FIND-DATA-FROM-COMMAND
SIGMA 24 >
(setq obj-type (find-data-from-command (open "log.txt") "types"))
Error: Undefined operator SPLIT-SEQUENCE in form (SPLIT-SEQUENCE ":" LINE).
The problem is nothing to do with Quicklisp, it's to do with a package you've defined somewhere called SIGMA. In particular somewhere in your code is a form which looks like:
(defpackage "SIGMA" ;or :sigma or :SIGMA or #:sigma or ...
...
(:use ...)
...)
And then later
(in-package "SIGMA")
And the problem with this is that your package definition has an explicit (:use ...) clause.
defpackage, and the underlying function make-package has slightly interesting behaviour for the :use clause (or keyword argument in the case of make-package):
if none is given then there is an implementation-defined default;
if one is given then it overrides the default.
The idea, I think, is that implementations may want to provide a bunch of additional functionality which is available by default, and this functionality can't be in the CL package since the contents of that package is defined in the standard. So if you just say
(defpackage "FOO")
Then the implementation is allowed (and, perhaps, encouraged), to make the use-list of FOO have some useful packages in it. These packages might be the same ones that are in the default use-list of CL-USER, but I'm not sure that's required: the whole thing is somewhat under-specified.
The end result of this is that if you want to define packages which both make use of implementation-defined functionality and have explicit use-lists you have to resort to some slight trickery. How you do this is slightly up to you, but since you are by definition writing implementation-dependent code where you are defining packages like this, you probably want to make it clear that what you are doing is implementation-dependent, by some form like
(defpackage :foo
(:use ...)
#+LispWorks
(:use :lispworks :harlequin-common-lisp :cl)
...)
Or, if you just want some particular set of symbols
(defpackage :foo
(:use ...)
#+LispWorks
(:import-from :lispworks #:split-sequence))
Note that this is not quite the same thing as using a package containing the symbol.
In all these cases if your code has pretensions to be portable then there should be appropriate clauses for other implementations and a way of knowing when you're trying to run on an implemention you haven't yet seen: how to do this is outwith the scope of this answer I think.
Solved it.
The quickloading of the custom package was taking me into the package. I did not realize that. So I had to specify split-sequence is from outside. So, I replaced all occurrences of split-sequence in the function definition with
LISPWORKS:split-sequence
Then it worked.
If any one has a better solution, please do let me know. Thanks

Automating recompilation in emacs/slime live environment

Given this situation:
(defmacro mac1 ...)
(defun func1 ()
(mac1 ...))
Redefinition of mac1 in the live environment will not affect func1 until it is itself recompiled.
Is there a way to get emacs or lisp to automatically recompile func1 whenever mac1 is recompiled?
Something like this in the source would be acceptable:
(watch
(defmacro mac1 ...))
(on-signal (mac1)
(defun func1 ...))
Not that hard to implement, but I would rather avoid wheel reinvention.
Macros are not necessarily compiled. If you are using SBCL (see manual), there is a variable named sb-ext:*evaluator-mode* which can be set to :interpret so that macro are expanded during evaluation. Other implementations might provide something similar. That allows you to change the definitions of macros without recompiling call sites like you already do with functions.
Alternatively, slime defines a function named slime-who-macroexpands. You'd have to dig a little bit to see how it works and maybe exploit it, either in the Common Lisp environment (swank) or the emacs side.
For example in LispWorks you can do the following. Probably SBCL has a similar facility.
Let's say we have this:
(defmacro foo ()
`(list 1 2 3))
(defun bar () (first (foo)))
(defun baz () (second (foo)))
Now you can ask who calls foo:
CL-USER 11 > (who-calls 'foo)
(BAZ BAR)
This makes it easy to re-compile both functions:
CL-USER 12 > (mapcar 'compile (who-calls 'foo))
;;;*** Warning in BAZ: The definition of BAZ is already compiled.
;;;*** Warning in BAR: The definition of BAR is already compiled.
(BAZ BAR)
Since LispWorks keeps a who-calls database, one can recompile all functions which directly use and depend on other functions/macros.
The editor has the command Edit Callers and Continue Tags Search to find the callers and then to recompile them manually. It should be easy/possible to write an editor command which recompiles all callers.

How do I avoid eager macro expansion failures in emacs macros?

I defined this macro:
(defmacro with-current-directory (directory &rest body)
"Set the working directory temporarily set to DIRECTORY and run BODY.
DIRECTORY is expanded"
`(let ((default-directory
,(file-name-as-directory
(expand-file-name (eval directory)))))
,#body))
which I use in some lisp functions that are loaded when emacs opens. I always get these warnings:
Eager macro-expansion failure: (void-variable repo-dir)
Eager macro-expansion failure: (wrong-type-argument stringp nil)
Which I understand is happening because those variables are not defined at load time, and emacs is trying to eval them. My question is, how do I avoid getting these warnings. Is there a way to define the macro so that doesn't happen? I cannot figure out how to use the value of the variable, and not the symbol for the variable itself.
Like this:
`(let ((default-directory
(file-name-as-directory (expand-file-name ,directory))))
Since directory is not the value, but the lisp expression that would evaluate to the value, you need to insert (using the comma operator) the expression into the expansion of the macro. If you put the comma before the call to file-name-as-directory, you would have to be able to compute the directory at macro expansion time based only on the tokens of the expression, which you can't do if directory refers to a variable name.
Looks like some beat me to it. Look at the other answer.
You should not be evaluating the file name expansion at expansion time. Also the eval call should not be there. The only thing that should happen during macro expansion is placing the value of directory inside the returned expression. Remove eval and place your comma in front of directory.
It's nice to know that anytime you're using eval, you're probably doing something wrong

How do I write a scheme macro that defines a variable and also gets the name of that variable as a string?

This is mostly a follow-up to this question. I decided to just keep YAGNI in mind and created a global variable (libpython). I set it to #f initially, then set! it when init is called. I added a function that should handle checking if that value has been initialized:
(define (get-cpyfunc name type)
(lambda args
(if libpython
(apply (get-ffi-obj name libpython type) args)
(error "Call init before using any Python C functions"))))
So now here's what I want to do. I want to define a macro that will take the following:
(define-cpyfunc Py_Initialize (_fun -> _void))
And convert it into this:
(define Py_Initialize (get-cpyfunc "Py_Initialize" (_fun -> _void)))
I've been reading through the macro documentation to try figuring this out, but I can't seem to figure out a way to make it work. Can anyone help me with this (or at least give me a general idea of what the macro would look like)? Or is there a way to do this without macros?
I've answered most of this question in the other one (I didn't see this one). It's fine to use a function that pulls out the bindings like this, but one possible problem here is that since you generate the binding only when the resulting function is called, this binding is re-created on each and every call. An easy way to solve this quickly is using promises, something like this:
(require scheme/promise)
(define (get-cpyfunc name type)
(define the-function
(delay (if libpython
(get-ffi-obj name libpython type)
(error "Call init before using any Python C functions"))))
(lambda args (apply (force the-function) args)))
But this is essentially almost the same as the code I posted in your previous question.
More random notes:
get-ffi-obj will accept a symbol as the name to bind to -- this is intentional, to make such macros (as in the last question) easy.
Using (symbol->string 'name) in a macro is fine. As I noted above in my comment reply to Nathan's comment, this means that it gets called at runtime, but mzscheme should be able to optimize that anyway, so there's no need to try and write some sophisticated macro that does the job at compile time.
Look inside the PLT directory -- you will find a collection called ffi. This is a collection of examples of bindings with various styles. Macros that create the bindings are very common in these examples.
Why don't you change the generated code to
(define Py_Initialize (get-cpyfunc 'Py_Initialize (_fun -> _void)))
and then have get-cpyfunc run (symbol->string name)?
Granted, there is probably a way to do this with syntax-case (I can never remember its syntax though), and definitely if you're using a Scheme with CL-esque define-macro.
It's not the complete answer, but I came up with a macro that meets both requirements (defines a variable and a string with the name of that variable):
> (define-syntax (my-syntax stx)
(syntax-case stx ()
[(_ id)
#'(define-values (id) (values (symbol->string (quote id))))]))
> (my-syntax y)
> y
"y"

elisp macro to write a function?

I have written a few nearly identical functions, except for their names. For example:
; x is name, such as function/paragraph/line/etc.
(defun my-x-function
(interactive)
(mark-x) (do-more-stuff) (modify-x))
Is there a way to automatically generate such functions? I have a feeling this is what macros do, but I am not sure how to use them. Any help, maybe including a small example would be great.
Thanks!
Yep, that's exactly what macros do. Here's a straightforward macro that builds functions according to the pattern you specified:
(defmacro make-my-function (name)
(list 'defun (intern (format "my-%s-function" name)) ()
(list 'interactive)
(list (intern (format "mark-%s" name)))
(list 'do-more-stuff)
(list (intern (format "modify-%s" name)))))
You can copy this macro to a *scratch* buffer in Emacs and evaluate it, and then check that it works like this:
(make-my-function x) ; type control-J here
my-x-function ; <-- Emacs's output
(symbol-function 'my-x-function) ; type control-J here
(lambda nil (interactive) (mark-x) (do-more-stuff) (modify-x)) ; <-- Emacs's output
More commonly one would use the backquote facility to write macros more concisely, but all macros essentially work in the same manner as the above example.
Macros can do that, but there are lots of template modules for emacs to do similar work. I use a thing called yasnippet.el to do quick code-generation things. For example, in a C-source file, if I type for<TAB>, I get a for loop template; it allows me to fill in the template, setting the variable name, limits, and internal loop contents.
looks like this:
You can set up templates for anything you like. Function definitions, if statements, switch statements, whatever. Set up different templates for different modes. The template for a for loop in C is different than the template for a for loop in C#, and so on. Very handy.