multiple bounds for scipy.optimize.minimize - scipy

In scipy.optimize.minimize
w0 = np.ones(assets_num) / assets_num #assets_num is an integer
bnds_1 = tuple((0.25, 1) for w in w0)
bnds_2 = tuple((0, 0.00001) for w in w0)
opt = minimize(obj_func, w0, methods='SLSQP', bounds=(bnds_1, bnds_2))
I hope to let w lay in (0, 0.00001)U(0.025, 1), which means I allow it to be zero (approximately), but once it is larger than zero, the lower bound for it should be 0.025.
So how can I revise the bounds to meet the requirement? Thanks for your assistance!

The solvers in SciPy can't handle such a constraint. They expect a feasible solution to satisfy all the constraints. That is, the assumption is that you want to solve bnds_1 and bnds_2. There is no way to specify bnds_1 or bnds_2. (And to do so would require some sort of discrete optimization to be added to the solvers.)
You can solve the problem twice, once with just bnds_1 and again with just bnds_2. Then pick the best of the two solutions.

Related

Finding minimum of max function, subject to constraint, in MATLAB

Ok, so I have a function that takes the maximum of a 16 different functions. I want to find the minimum of this function subject to the condition that this function is equal to another function. This is what the code looks like, (H1,...,H16 are all column vectors):
function f = opt(a,b,c)
F1 = a*mean(H1) + b*var(H1)+ c*skewness(H1);
...*more functions here*...
F15 = a*mean(H15) + b*var(H15)+ c*skewness(H15);
F16 = a*mean(H16) + b*var(H16)+ c*skewness(H16);
FVEC = [F1,F2,F3,F4,F5,F6,F7,F8,F9,F10,F11,F12,F13,F14,F15,F16];
[ max, max_index ] = max(FVEC);
f = max;
end
The constraint I want it basically that the above function should be equal to the first one in the list:
opt(a,b,c) = a*mean(H1) + b*var(H1)+ c*skewness(H1)
I think I'm supposed to use fmincon, but despite my repeated attempts, I seem to be running into issues, plus it does not look like it supports constraints depending on another function (although I might be misreading the docs). Is this the right function to use? What is the best way to approach this problem? I am very new to MATLAB and, so, I'm not familiar with what a typical approach would look like.
The max function is non-differentiable. Most solvers expect smooth functions (including fmincon). Luckily there is a simple linear formulation:
min y
y >= v(i) for all i
y will automatically assume the largest value of the v(i).
Your constraint would be
y = v(1)
In this case we can even drop the min y.
This would enforce the first set of observations to be the maximum v. I am not sure, but this could lead to an infeasible model (if it cannot arrange a,b,c in such a way).

Optimization with Unknown Number of Variables

Since the original problem is more complicated, the idea is described using a simple example below.
For example, suppose we want to put several router antennas somewhere in a room so that the cellphone get most signal strength on the table (received power > Pmax) while weakest signal strength on bed (received power < Pmin). What is the best (minimum) number of antennas that should be used, and where should they be placed, in order to achieve the goal.
Mathematically,
SIGNAL_STRENGTH is dependent on variable (x, y, z) and the number
of variables
. i.e. location and number of antennas.
Besides, assume
PREDICTION = f((x1, y1, z1), (x2, y2, z2), ... (xi, yi, zi), ... (xn,
yn, zn))
where n and (xi, yi, zi) are to be optimized. The goal is to minimize
cost function = ||SIGNAL_STRENGTH - PREDICTION||
I tried to use GA with mixed integer programming in Matlab to implement that. Two optimization functions are used, outer function is to optimize n, and inner optimization function optimizes (x, y, z) with given n. This method works slow and I haven't seen one result given by this method so far.
Does anyone have a more efficient way to solve this problem? Any suggestion is appreciated. Thanks in advance.
Terminology | Problem Definition
An antenna is sending at position a in R^3 with constant power. Its signal strength can be measured by some S: R^3 -> R where S has a single maximum S_0 at a and the set, constructed by S(x) > const, is simply connected, i.e. S(x) = S_0 * exp(-const * (x-a)^2).
Given a set of antennas A the resulting signal strength is the maximum of a single antenna
S_A(x) = max{S_a(x) : for all a in A} ,
which means we 'lock' on the strongest antenna, which is what cell phones do.
Let K = R^3 x R denote a space of points (position, intensity). Now concider two finite subsets POI_min and POI_max of K. We want to find the set A with the minimal amount of antennas (|A| -> min.), that satisfies
for all (x,w) in POI_min : S_A(x) < w and for all (x,w) in POI_max : S_A(x) > w .
Implication
As S(x) > const is simply connected there has to be an antenna in a sphere around the position of each element (x,w) in POI_max with radius r = max{||xi - x|| : for all xi in S(xi) = w}. Which means that if we would put an antenna at the position of (x,w), then the furthest we can go away from x and still have signal strength w is the radius r within which an actual antenna has to be positioned.
With a similar argumentation for POI_min it follows that there is no antenna within r = min{||xi - x|| : for all xi in S(xi) = w}.
Solution
Instead of solving a nonlinear optimization task we can intersect spheres to obtain the optimal solution. If k spheres around the POI_max positions intersect, we can place a single antenna in the intersection, reducing the amount of antennas needed by k-1.
However each antenna that is placed must satisfy all constraints given by the elements of POI_min. Assuming that antennas are omnidirectional and thus orientation of an antenna doesn't matter we can do (pseudocode):
min_sphere = {(x_i,r_i) : from POI_min},
spheres_to_cover = {(x_i,r_i) : from POI_max}
A = {}
while not is_empty(spheres_to_cover)
power_set_score = struct // holds score, k
PS <- costruct power set of sphere_to_cover
for i = 1:number_of_elements(PS)
k = PS[i]
if intersection(k) \ min_sphere is not empty
power_set_score[i].score = |k|
else
power_set_score[i].score = 0
end if
power_set_score[i].k = k
end for
sort(power_set_score) // sort by score, biggest first
A <- add arbitrary point in (intersection(power_set_score[1].k) \ min_sphere)
spheres_to_cover = spheres_to_cover \ power_set_score[1].k
end while
On the other hand you have just given an example problem and thus this solution may not be applicable or broad enough for your case. I did make a few assumptions. So being more specific in the question might give you an even better answer.

Optimization giving unexpected results MATLAB

I'm trying to optimize a function which I know the results but matlab is giving me weird results. Here's what I'm trying to do:
max: f(x)= -1815·x1 - 379·x2
subject to:
-1475·x1 - 112013·x2 >= -700000
(x1,x2) <= 80
(x1,x2) >= 0
Here is my actual code:
f = [1815;379]
A = [-1475 -11203]
b = [-700000]
ub = (ones(1,2)*80)'
lb = zeros(2,1)
x = linprog(f,A,b,[],[],lb,ub)
How would you do it?
This problem can easily be solved analitically.
As mentioned in the comments, you currently would expect 0. If however, you actually change your constraint from larger than, into smaller than, the optimum solution is actually close what matlab gives you.
It would basically be 700000/112013 = 6.248...
It is off by a factor 10, but I assume that you made a typo somewhere.
If you are struggeling with how this function works, just try a simple case first (that you can easily verify manually) and then increase the complexity. Either way, your excel solution is nowhere near what would come out of the problem description.
Your linear constraint has incorrect sign w.r.t. how it's expected by linprog.
As with many linear problems, it's actually easiest to just make a plot:
[x1,x2] = meshgrid(0:80);
f = -1815*x1 - 379*x2;
f(-1475*x1 - 112013*x2 < -7e5) = NaN;
surf(x1,x2,f, 'edgecolor', 'none')
xlabel('x1'), ylabel('x2')
This makes it obvious that (0,0) is the solution:

Matlab's solve: Solution not satisfying the equation

I am trying to solve equations with this code:
a = [-0.0008333 -0.025 -0.6667 -20];
length_OnePart = 7.3248;
xi = -6.4446;
yi = -16.5187;
syms x y
[sol_x,sol_y] = solve(y == poly2sym(a), ((x-xi)^2+(y-yi)^2) == length_OnePart^2,x,y,'Real',true);
sol_x = sym2poly(sol_x);
sol_y = sym2poly(sol_y);
The sets of solution it is giving are (-23.9067,-8.7301) and (11.0333,-24.2209), which are not even satisfying the equation of circle. How can I rectify this problem?
If you're trying to solve for the intersection of the cubic and the circle, i.e., where y==poly2sym(a) equals (x-xi)^2+(y-yi)^2==length_OnePart^2 it looks like solve may be confused about something when the circle is represented parametrically rather than as single valued functions. It might also have to do with the fact that x and y are not independent solutions, but rather that the latter depends on the former. It also could depend on the use of a numeric solver in this case. solve seems to work fine with similar inputs to yours, so you might report this behavior to the MathWorks to see what they think.
In any case, here is a better, more efficient way to to tackle this as a root-solving problem (as opposed to simultaneous equations):
a = [-0.0008333 -0.025 -0.6667 -20];
length_OnePart = 7.3248;
xi = -6.4446;
yi = -16.5187;
syms x real
f(x) = poly2sym(a);
sol_x = solve((x-xi)^2+(f(x)-yi)^2==length_OnePart^2,x)
sol_y = f(sol_x)
which returns:
sol_x =
0.00002145831413371390464567553686047
-13.182825373861454619370838716408
sol_y =
-20.000014306269544436430325843024
-13.646590348358951818881695033728
Note that you might get slightly more accurate results (one solution is clearly at 0,-20) if you represent your coefficients and parameters more precisely then just four decimal places, e.g., a = [-1/1200 -0.025 -2/3 -20]. In fact, solve might be able to find one or more solutions exactly, if you provide exact representations.
Also, in your code, the calls to sym2poly are doing nothing other than converting back to floating-point (double can be used for this) as the inputs are not in the form of symbolic polynomial equations.

Matlab Code To Approximate The Exponential Function

Does anyone know how to make the following Matlab code approximate the exponential function more accurately when dealing with large and negative real numbers?
For example when x = 1, the code works well, when x = -100, it returns an answer of 8.7364e+31 when it should be closer to 3.7201e-44.
The code is as follows:
s=1
a=1;
y=1;
for k=1:40
a=a/k;
y=y*x;
s=s+a*y;
end
s
Any assistance is appreciated, cheers.
EDIT:
Ok so the question is as follows:
Which mathematical function does this code approximate? (I say the exponential function.) Does it work when x = 1? (Yes.) Unfortunately, using this when x = -100 produces the answer s = 8.7364e+31. Your colleague believes that there is a silly bug in the program, and asks for your assistance. Explain the behaviour carefully and give a simple fix which produces a better result. [You must suggest a modification to the above code, or it's use. You must also check your simple fix works.]
So I somewhat understand that the problem surrounds large numbers when there is 16 (or more) orders of magnitude between terms, precision is lost, but the solution eludes me.
Thanks
EDIT:
So in the end I went with this:
s = 1;
x = -100;
a = 1;
y = 1;
x1 = 1;
for k=1:40
x1 = x/10;
a = a/k;
y = y*x1;
s = s + a*y;
end
s = s^10;
s
Not sure if it's completely correct but it returns some good approximations.
exp(-100) = 3.720075976020836e-044
s = 3.722053303838800e-044
After further analysis (and unfortunately submitting the assignment), I realised increasing the number of iterations, and thus increasing terms, further improves efficiency. In fact the following was even more efficient:
s = 1;
x = -100;
a = 1;
y = 1;
x1 = 1;
for k=1:200
x1 = x/200;
a = a/k;
y = y*x1;
s = s + a*y;
end
s = s^200;
s
Which gives:
exp(-100) = 3.720075976020836e-044
s = 3.720075976020701e-044
As John points out in a comment, you have an error inside the loop. The y = y*k line does not do what you need. Look more carefully at the terms in the series for exp(x).
Anyway, I assume this is why you have been given this homework assignment, to learn that series like this don't converge very well for large values. Instead, you should consider how to do range reduction.
For example, can you use the identity
exp(x+y) = exp(x)*exp(y)
to your advantage? Suppose you store the value of exp(1) = 2.7182818284590452353...
Now, if I were to ask you to compute the value of exp(1.3), how would you use the above information?
exp(1.3) = exp(1)*exp(0.3)
But we KNOW the value of exp(1) already. In fact, with a little thought, this will let you reduce the range for an exponential down to needing the series to converge rapidly only for abs(x) <= 0.5.
Edit: There is a second way one can do range reduction using a variation of the same identity.
exp(x) = exp(x/2)*exp(x/2) = exp(x/2)^2
Thus, suppose you wish to compute the exponential of large number, perhaps 12.8. Getting this to converge acceptably fast will take many terms in the simple series, and there will be a great deal of subtractive cancellation happening, so you won't get good accuracy anyway. However, if we recognize that
12.8 = 2*6.4 = 2*2*3.2 = ... = 16*0.8
then IF you could efficiently compute the exponential of 0.8, then the desired value is easy to recover, perhaps by repeated squaring.
exp(12.8)
ans =
362217.449611248
a = exp(0.8)
a =
2.22554092849247
a = a*a;
a = a*a;
a = a*a;
a = a*a
362217.449611249
exp(0.8)^16
ans =
362217.449611249
Note that WHENEVER you do range reduction using methods like this, while you may incur numerical problems due to the additional computations necessary, you will usually come out way ahead due to the greatly enhanced convergence of your series.
Why do you think that's the wrong answer? Look at the last term of that sequence, and it's size, and tell me why you expect you should have an answer that's close to 0.
My original answer stated that roundoff error was the problem. That will be a problem with this basic approach, but why do you think 40 is enough terms for the appropriate mathematical ( as opposed to computer floating point arithmetic) answer.
100^40 / 40! ~= 10^31.
Woodchip has the right idea with range reduction. That's the typical approach people use to implement these kinds of functions very quickly. Once you get that all figured out, you deal with roundoff errors of alternating sequences, by summing adjacent terms within the loop, and stepping with k = 1 : 2 : 40 (for instance). That doesn't work here until you use woodchips's idea because for x = -100, the summands grow for a very long time. You need |x| < 1 to guarantee intermediate terms are shrinking, and thus a rewrite will work.