Method col([class java.util.ArrayList]) does not exist - pyspark

Getting this exception on the below code.
Code:
when(INV['VFA_EXTRA_AM'].isNull(), None)
.otherwise((INV['VFA_EXTRA_AM'].cast(DecimalType(12,2))/INV['EXTRAADULT_COUNT_CHECK']
).cast(DecimalType(12,2))).alias("PER_PRSN_VFA_EXTRA_AM"),
when(INV['VFC_EXTRA_AM'].isNull(), None)
.otherwise((INV['VFC_EXTRA_AM'].cast(DecimalType(12, 2))/INV['EXTRACHILD_COUNT_CHECK']
).cast(DecimalType(12, 2))).alias("PER_PRSN_VFC_EXTRA_AM"),
when(INV['VFI_EXTRA_AM'].isNull(), None)
.otherwise((INV['VFI_EXTRA_AM'].cast(DecimalType(12, 2))/INV['EXTRAINFANT_COUNT_CHECK']
).cast(DecimalType(12, 2))).alias("PER_PRSN_VFI_EXTRA_AM"))
INV is the DataFrame name.
Error log:
File "/mnt/dclrms-cogs/resbaseline/Integration.py", line 52, in execueIntegration
).cast(DecimalType(12, 2))).alias("PER_PRSN_VFI_EXTRA_AM"))\
File "/usr/lib/spark/python/lib/pyspark.zip/pyspark/sql/dataframe.py", line 1040, in select
File "/usr/lib/spark/python/lib/pyspark.zip/pyspark/sql/dataframe.py", line 895, in _jcols
File "/usr/lib/spark/python/lib/pyspark.zip/pyspark/sql/dataframe.py", line 882, in _jseq
File "/usr/lib/spark/python/lib/pyspark.zip/pyspark/sql/column.py", line 60, in _to_seq
File "/usr/lib/spark/python/lib/pyspark.zip/pyspark/sql/column.py", line 48, in _to_java_column
File "/usr/lib/spark/python/lib/pyspark.zip/pyspark/sql/column.py", line 41, in _create_column_from_name
File "/usr/lib/spark/python/lib/py4j-0.10.4-src.zip/py4j/java_gateway.py", line 1133, in __call__
File "/usr/lib/spark/python/lib/pyspark.zip/pyspark/sql/utils.py", line 63, in deco
File "/usr/lib/spark/python/lib/py4j-0.10.4-src.zip/py4j/protocol.py", line 323, in get_return_value
py4j.protocol.Py4JError: An error occurred while calling z:org.apache.spark.sql.functions.col. Trace:
py4j.Py4JException: Method col([class java.util.ArrayList]) does not exist
at py4j.reflection.ReflectionEngine.getMethod(ReflectionEngine.java:318)
at py4j.reflection.ReflectionEngine.getMethod(ReflectionEngine.java:339)
at py4j.Gateway.invoke(Gateway.java:274)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:214)
at java.lang.Thread.run(Thread.java:748)

Related

unable to connect to Snowflake from AWS Glue

I'm having issues connecting to Snowflake from aws glue.
I'm trying to read a table from Snowflake without any luck, any help would be appreciated.
Error is below:
23/02/14 01:32:55 INFO Utils: Successfully started service 'sparkDriver' on port 38325.
23/02/14 01:32:59 INFO GlueContext: GlueMetrics configured and enabled
23/02/14 01:33:01 ERROR ProcessLauncher: Error from Python:Traceback (most recent call last):
File "/tmp/TestSFConn.py", line 111, in <module>
.option("dbtable", snowflake_database+"."+snowflake_schema+"."+source_table_name).load()
File "/opt/amazon/spark/python/lib/pyspark.zip/pyspark/sql/readwriter.py", line 210, in load
return self._df(self._jreader.load())
File "/opt/amazon/spark/python/lib/py4j-0.10.9-src.zip/py4j/java_gateway.py", line 1305, in __call__
answer, self.gateway_client, self.target_id, self.name)
File "/opt/amazon/spark/python/lib/pyspark.zip/pyspark/sql/utils.py", line 111, in deco
return f(*a, **kw)
File "/opt/amazon/spark/python/lib/py4j-0.10.9-src.zip/py4j/protocol.py", line 328, in get_return_value
format(target_id, ".", name), value)
py4j.protocol.Py4JJavaError: An error occurred while calling o104.load.
: java.lang.NoClassDefFoundError: scala/$less$colon$less
at net.snowflake.spark.snowflake.DefaultSource.shortName(DefaultSource.scala:44)
at org.apache.spark.sql.execution.datasources.DataSource$.$anonfun$lookupDataSource$2(DataSource.scala:659)
at org.apache.spark.sql.execution.datasources.DataSource$.$anonfun$lookupDataSource$2$adapted(DataSource.scala:659)
at scala.collection.TraversableLike.$anonfun$filterImpl$1(TraversableLike.scala:247)
at scala.collection.Iterator.foreach(Iterator.scala:937)
at scala.collection.Iterator.foreach$(Iterator.scala:937)
at scala.collection.AbstractIterator.foreach(Iterator.scala:1425)
at scala.collection.IterableLike.foreach(IterableLike.scala:70)
at scala.collection.IterableLike.foreach$(IterableLike.scala:69)
at scala.collection.AbstractIterable.foreach(Iterable.scala:54)
at scala.collection.TraversableLike.filterImpl(TraversableLike.scala:246)
at scala.collection.TraversableLike.filterImpl$(TraversableLike.scala:244)
at scala.collection.AbstractTraversable.filterImpl(Traversable.scala:104)
at scala.collection.TraversableLike.filter(TraversableLike.scala:258)
What am I missing? I'm not able to figure out why I'm unable to connect.
I have also added the jar files in the "Dependent JARs path" in job details in Glue.
this is what I added:
s3://aws-glue-poc/snowflake_files/spark-snowflake_2.13-2.11.1-spark_3.3.jar,
s3://aws-glue-poc/snowflake_files/snowflake-jdbc-3.13.27.jar
Code below:
args = getResolvedOptions(sys.argv, ['JOB_NAME'])
sc = SparkContext()
sc.setLogLevel("ALL")
glueContext = GlueContext(sc)
spark = glueContext.spark_session
job = Job(glueContext)
job.init(args['JOB_NAME'], args)
print("Spark session created")
try:
SNOWFLAKE_SOURCE_NAME = "net.snowflake.spark.snowflake"
snowflake_database="DEV_123"
snowflake_schema="schema123"
source_table_name="TABLE1"
snowflake_options = {
"sfURL": "XXXXXXXXXXXXXXXXXXXX.snowflakecomputing.com",
"sfUser": "USER1",
"sfPassword": "1234567",
"sfDatabase": snowflake_database,
"sfSchema": snowflake_schema,
"sfWarehouse": "WAREHOUSE_1234",
"tracing" : "ALL"
}
print("12345 - Before Read")
df = spark.read\
.format(SNOWFLAKE_SOURCE_NAME)\
.options(**snowflake_options)\
.option("dbtable", snowflake_database+"."+snowflake_schema+"."+source_table_name).load()
df.show()
print("12345 - After Read")
df1 = df.select(df["*"])
df1.write.format("snowflake") \
.options(**snowflake_options) \
.option("dbtable", "TABLE_23").mode("overwrite") \
.save()
except Exception as glue_exception_error:
print("##################### -- Error: " + str(glue_exception_error) + " -- ##########################")
raise
For the Spark connector v2.11.1, you will need to use JDBC driver v3.13.24 rather than 3.13.27

Getting error while writing the spark dataframe as CSV file

23/01/10 14:51:56 ERROR FileFormatWriter: Aborting job 18d74180-1f1e-44ea-80dc-caa5a2fe0525.
java.io.IOException: Failed to rename DeprecatedRawLocalFileStatus{path=file:/d/myproject/FCD/Sparck_updated_code/first-class-data-backend/first_class/test/\_temporary/0/task_2023011020
21531054031999327673221_0005_m_000000/part-00000-250cb7ce-e146-4cfd-b9f1-f810af4630f2-c000.csv; isDirectory=false; length=13520; replication=1; blocksize=33554432; modification_time=16
73362315593; access_time=1673362315593; owner=; group=; permission=rw-rw-rw-; isSymlink=false; hasAcl=false; isEncrypted=false; isErasureCoded=false} to file:/d/myproject/FCD/Sparck_updated_code/first-class-data-backend/first_class/test/part-00000-250cb7ce-e146-4cfd-b9f1-f810af4630f2-c000.csv
at org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter.mergePaths(FileOutputCommitter.java:477)
at org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter.mergePaths(FileOutputCommitter.java:490)
at org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter.commitJobInternal(FileOutputCommitter.java:405)
at org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter.commitJob(FileOutputCommitter.java:377)
at org.apache.spark.internal.io.HadoopMapReduceCommitProtocol.commitJob(HadoopMapReduceCommitProtocol.scala:192)
at org.apache.spark.sql.execution.datasources.FileFormatWriter$.$anonfun$write$25(FileFormatWriter.scala:267)
at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:23)
at org.apache.spark.util.Utils$.timeTakenMs(Utils.scala:642)
at org.apache.spark.sql.execution.datasources.FileFormatWriter$.write(FileFormatWriter.scala:267)
at org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelationCommand.run(InsertIntoHadoopFsRelationCommand.scala:186)
at org.apache.spark.sql.execution.command.DataWritingCommandExec.sideEffectResult$lzycompute(commands.scala:113)
at org.apache.spark.sql.execution.command.DataWritingCommandExec.sideEffectResult(commands.scala:111)
at org.apache.spark.sql.execution.command.DataWritingCommandExec.executeCollect(commands.scala:125)
at org.apache.spark.sql.execution.QueryExecution$$anonfun$eagerlyExecuteCommands$1.$anonfun$applyOrElse$1(QueryExecution.scala:98)
at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$6(SQLExecution.scala:109)
at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:169)
at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$1(SQLExecution.scala:95)
at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:779)
at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:64)
at org.apache.spark.sql.execution.QueryExecution$$anonfun$eagerlyExecuteCommands$1.applyOrElse(QueryExecution.scala:98)
at org.apache.spark.sql.execution.QueryExecution$$anonfun$eagerlyExecuteCommands$1.applyOrElse(QueryExecution.scala:94)
at org.apache.spark.sql.catalyst.trees.TreeNode.$anonfun$transformDownWithPruning$1(TreeNode.scala:584)
at org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:176)
at org.apache.spark.sql.catalyst.trees.TreeNode.transformDownWithPruning(TreeNode.scala:584)
at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.org$apache$spark$sql$catalyst$plans$logical$AnalysisHelper$$super$transformDownWithPruning(LogicalPlan.scala:30)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.transformDownWithPruning(AnalysisHelper.scala:267)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.transformDownWithPruning$(AnalysisHelper.scala:263)
at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.transformDownWithPruning(LogicalPlan.scala:30)
at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.transformDownWithPruning(LogicalPlan.scala:30)
at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:560)
at org.apache.spark.sql.execution.QueryExecution.eagerlyExecuteCommands(QueryExecution.scala:94)
at org.apache.spark.sql.execution.QueryExecution.commandExecuted$lzycompute(QueryExecution.scala:81)
at org.apache.spark.sql.execution.QueryExecution.commandExecuted(QueryExecution.scala:79)
at org.apache.spark.sql.execution.QueryExecution.assertCommandExecuted(QueryExecution.scala:116)
at org.apache.spark.sql.DataFrameWriter.runCommand(DataFrameWriter.scala:860)
at org.apache.spark.sql.DataFrameWriter.saveToV1Source(DataFrameWriter.scala:390)
at org.apache.spark.sql.DataFrameWriter.saveInternal(DataFrameWriter.scala:363)
at org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:239)
at org.apache.spark.sql.DataFrameWriter.csv(DataFrameWriter.scala:851)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:282)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.ClientServerConnection.waitForCommands(ClientServerConnection.java:182)
at py4j.ClientServerConnection.run(ClientServerConnection.java:106)
at java.lang.Thread.run(Thread.java:750)
23/01/10 14:51:56 WARN FileUtil: Failed to delete file or dir \[/d/myproject/FCD/Sparck_updated_code/first-class-data-backend/first_class/test/\_temporary/0/task_202301102021531054031999327673221_0005_m_000000/.part-00000-250cb7ce-e146-4cfd-b9f1-f810af4630f2-c000.csv.crc\]: it still exists.
23/01/10 14:51:56 WARN FileUtil: Failed to delete file or dir \[/d/myproject/FCD/Sparck_updated_code/first-class-data-backend/first_class/test/\_temporary/0/task_202301102021531054031999327673221_0005_m_000000/part-00000-250cb7ce-e146-4cfd-b9f1-f810af4630f2-c000.csv\]: it still exists.
Traceback (most recent call last):
File "/d/myproject/FCD/Sparck_updated_code/first-class-data-backend/first_class/manage.py", line 21, in \<module\>
main()
File "/d/myproject/FCD/Sparck_updated_code/first-class-data-backend/first_class/manage.py", line 17, in main
execute_from_command_line(sys.argv)
File "/home/admin123/.virtualenvs/fcd/lib/python3.10/site-packages/django/core/management/__init__.py", line 419, in execute_from_command_line
utility.execute()
File "/home/admin123/.virtualenvs/fcd/lib/python3.10/site-packages/django/core/management/__init__.py", line 413, in execute
self.fetch_command(subcommand).run_from_argv(self.argv)
File "/home/admin123/.virtualenvs/fcd/lib/python3.10/site-packages/django/core/management/base.py", line 354, in run_from_argv
self.execute(\*args, \*\*cmd_options)
File "/home/admin123/.virtualenvs/fcd/lib/python3.10/site-packages/django/core/management/base.py", line 398, in execute
output = self.handle(\*args, \*\*options)
File "/d/myproject/FCD/Sparck_updated_code/first-class-data-backend/first_class/core/management/commands/prepare_ncoa_sp.py", line 26, in handle
step.start()
File "/d/myproject/FCD/Sparck_updated_code/first-class-data-backend/first_class/core/management/commands/prepare_ncoa_sp.py", line 45, in start
self.prepare_agent_address_updates()
File "/d/myproject/FCD/Sparck_updated_code/first-class-data-backend/first_class/core/management/commands/prepare_ncoa_sp.py", line 141, in prepare_agent_address_updates
self.\_load_and_normalize(file_glob, {
File "/d/myproject/FCD/Sparck_updated_code/first-class-data-backend/first_class/core/management/commands/prepare_ncoa_sp.py", line 127, in \_load_and_normalize
df.write.option("header", True).csv('test')
File "/home/admin123/.virtualenvs/fcd/lib/python3.10/site-packages/pyspark/sql/readwriter.py", line 1240, in csv
self.\_jwrite.csv(path)
File "/home/admin123/.virtualenvs/fcd/lib/python3.10/site-packages/py4j/java_gateway.py", line 1321, in __call__
return_value = get_return_value(
File "/home/admin123/.virtualenvs/fcd/lib/python3.10/site-packages/pyspark/sql/utils.py", line 190, in deco
return f(\*a, \*\*kw)
File "/home/admin123/.virtualenvs/fcd/lib/python3.10/site-packages/py4j/protocol.py", line 326, in get_return_value
raise Py4JJavaError(
py4j.protocol.Py4JJavaError: An error occurred while calling o298.csv.
: org.apache.spark.SparkException: Job aborted.
at org.apache.spark.sql.errors.QueryExecutionErrors$.jobAbortedError(QueryExecutionErrors.scala:651)
at org.apache.spark.sql.execution.datasources.FileFormatWriter$.write(FileFormatWriter.scala:278)
at org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelationCommand.run(InsertIntoHadoopFsRelationCommand.scala:186)
at org.apache.spark.sql.execution.command.DataWritingCommandExec.sideEffectResult$lzycompute(commands.scala:113)
at org.apache.spark.sql.execution.command.DataWritingCommandExec.sideEffectResult(commands.scala:111)
at org.apache.spark.sql.execution.command.DataWritingCommandExec.executeCollect(commands.scala:125)
at org.apache.spark.sql.execution.QueryExecution$$anonfun$eagerlyExecuteCommands$1.$anonfun$applyOrElse$1(QueryExecution.scala:98)
at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$6(SQLExecution.scala:109)
at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:169)
at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$1(SQLExecution.scala:95)
at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:779)
at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:64)
at org.apache.spark.sql.execution.QueryExecution$$anonfun$eagerlyExecuteCommands$1.applyOrElse(QueryExecution.scala:98)
at org.apache.spark.sql.execution.QueryExecution$$anonfun$eagerlyExecuteCommands$1.applyOrElse(QueryExecution.scala:94)
at org.apache.spark.sql.catalyst.trees.TreeNode.$anonfun$transformDownWithPruning$1(TreeNode.scala:584)
at org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:176)
at org.apache.spark.sql.catalyst.trees.TreeNode.transformDownWithPruning(TreeNode.scala:584)
at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.org$apache$spark$sql$catalyst$plans$logical$AnalysisHelper$$super$transformDownWithPruning(LogicalPlan.scala:30)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.transformDownWithPruning(AnalysisHelper.scala:267)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.transformDownWithPruning$(AnalysisHelper.scala:263)
at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.transformDownWithPruning(LogicalPlan.scala:30)
at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.transformDownWithPruning(LogicalPlan.scala:30)
at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:560)
at org.apache.spark.sql.execution.QueryExecution.eagerlyExecuteCommands(QueryExecution.scala:94)
at org.apache.spark.sql.execution.QueryExecution.commandExecuted$lzycompute(QueryExecution.scala:81)
at org.apache.spark.sql.execution.QueryExecution.commandExecuted(QueryExecution.scala:79)
at org.apache.spark.sql.execution.QueryExecution.assertCommandExecuted(QueryExecution.scala:116)
at org.apache.spark.sql.DataFrameWriter.runCommand(DataFrameWriter.scala:860)
at org.apache.spark.sql.DataFrameWriter.saveToV1Source(DataFrameWriter.scala:390)
at org.apache.spark.sql.DataFrameWriter.saveInternal(DataFrameWriter.scala:363)
at org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:239)
at org.apache.spark.sql.DataFrameWriter.csv(DataFrameWriter.scala:851)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:282)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.ClientServerConnection.waitForCommands(ClientServerConnection.java:182)
at py4j.ClientServerConnection.run(ClientServerConnection.java:106)
at java.lang.Thread.run(Thread.java:750)
Caused by: java.io.IOException: Failed to rename DeprecatedRawLocalFileStatus{path=file:/d/myproject/FCD/Sparck_updated_code/first-class-data-backend/first_class/test/\_temporary/0/task
at org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter.mergePaths(FileOutputCommitter.java:490)
at org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter.commitJobInternal(FileOutputCommitter.java:405)
at org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter.commitJob(FileOutputCommitter.java:377)
at org.apache.spark.internal.io.HadoopMapReduceCommitProtocol.commitJob(HadoopMapReduceCommitProtocol.scala:192)
at org.apache.spark.sql.execution.datasources.FileFormatWriter$.$anonfun$write$25(FileFormatWriter.scala:267)
at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:23)
at org.apache.spark.util.Utils$.timeTakenMs(Utils.scala:642)
at org.apache.spark.sql.execution.datasources.FileFormatWriter$.write(FileFormatWriter.scala:267)
... 42 more
As you can see above error occurred while try to write the spark dataframe as csv file
sparkContext = SparkContext("spark://DESKTOP-1L1BM8L.localdomain:7077", "fcd_spark_session")
spark_configuration = sparkContext._conf.setAll(
[("spark.shuffle.service.enabled", "false"), ("spark.dynamicAllocation.enabled", "false"),
("spark.executor.memory", "2g"), ("spark.executor.instances", 2)])
sparkContext.stop()
self.spark_session = SparkSession.builder.appName("fcd_spark_session").config(
conf=spark_configuration) \
.master('spark://DESKTOP-1L1BM8L.localdomain:7077').getOrCreate()
def _load_and_normalize(self, glob_paths, renames=None, columns=[], processed_columns=[],
remove_duplicates=[], ):
renames = renames or {}
files = sorted(glob.glob(glob_paths))
for filepath in files:
file_name = basename(filepath)
logger.info(f'adding {basename(filepath)}')
file_write_path = self.csv_fullpath(self.cleaned_folder, "NCOA_address", file_name)
print(file_write_path)
if not os.path.exists(file_write_path):
df = self.read_csv(filepath)
df = df[columns].copy()
df = df[:100]
df = df.fillna('').astype('str')
df = df.apply(tuple, axis=1).tolist()
df = self.spark_session.createDataFrame(df, columns)
df = self.add_procuredate(df, file_name)
df = self.uppercase_and_trim_all_columns(df)
for rename_columns in renames:
df = df.withColumnRenamed(rename_columns, renames[rename_columns])
all_cols_except_procure = [col for col in df.schema.names if col != 'procure_date']
df = df.dropDuplicates(all_cols_except_procure)
df = self.get_normalized_address(df)
df = self.get_normalized_address(df, col_name='orig_normalized_address',
full_address_col='orig_address', city_col='orig_city',
state_col='orig_state',
zip_col='orig_zip')
df = df.where((df.full_address != '') & (df.normalized_address != ''))
df = df.select(processed_columns)
df = df.dropDuplicates(remove_duplicates)
df.write.option("header", True).format("csv").csv('test')
gc.collect()
else:
logger.info(f'{basename(filepath)} file is already available in cleaned folder')
Any suggestions and please comment if you need any additional info regarding the code and config

pyspark issue while connecting

I am new to the pyspark.
i was trying to initialize a pyspark session .
But getting the below error. I am doing the pyspark2 command in local machine .
When i tried first time using scala the spark session invokation is correct . Then i tried to invoke Pyspark that time i am getting error. Please let me know how i can come out of this error
Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties
Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel).
22/03/08 22:55:41 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
22/03/08 22:55:41 WARN SparkContext: Another SparkContext is being constructed (or threw an exception in its constructor). This may indicate an error, since only one SparkContext should be running in this JVM (see SPARK-2243). The other SparkContext was created at:
org.apache.spark.api.java.JavaSparkContext.<init>(JavaSparkContext.scala:58)
java.base/jdk.internal.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method)
java.base/jdk.internal.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:77)
java.base/jdk.internal.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45)
java.base/java.lang.reflect.Constructor.newInstanceWithCaller(Constructor.java:499)
java.base/java.lang.reflect.Constructor.newInstance(Constructor.java:480)
py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:247)
py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
py4j.Gateway.invoke(Gateway.java:238)
py4j.commands.ConstructorCommand.invokeConstructor(ConstructorCommand.java:80)
py4j.commands.ConstructorCommand.execute(ConstructorCommand.java:69)
py4j.ClientServerConnection.waitForCommands(ClientServerConnection.java:182)
py4j.ClientServerConnection.run(ClientServerConnection.java:106)
java.base/java.lang.Thread.run(Thread.java:833)
C:\Spark\spark-3.2.1-bin-hadoop3.2\spark-3.2.1-bin-hadoop3.2\bin\..\python\pyspark\shell.py:42: UserWarning: Failed to initialize Spark session.
warnings.warn("Failed to initialize Spark session.")
Traceback (most recent call last):
File "C:\Spark\spark-3.2.1-bin-hadoop3.2\spark-3.2.1-bin-hadoop3.2\bin\..\python\pyspark\shell.py", line 38, in <module>
spark = SparkSession._create_shell_session() # type: ignore
File "C:\Spark\spark-3.2.1-bin-hadoop3.2\spark-3.2.1-bin-hadoop3.2\python\pyspark\sql\session.py", line 553, in _create_shell_session
return SparkSession.builder.getOrCreate()
File "C:\Spark\spark-3.2.1-bin-hadoop3.2\spark-3.2.1-bin-hadoop3.2\python\pyspark\sql\session.py", line 228, in getOrCreate
sc = SparkContext.getOrCreate(sparkConf)
File "C:\Spark\spark-3.2.1-bin-hadoop3.2\spark-3.2.1-bin-hadoop3.2\python\pyspark\context.py", line 392, in getOrCreate
SparkContext(conf=conf or SparkConf())
File "C:\Spark\spark-3.2.1-bin-hadoop3.2\spark-3.2.1-bin-hadoop3.2\python\pyspark\context.py", line 146, in __init__
self._do_init(master, appName, sparkHome, pyFiles, environment, batchSize, serializer,
File "C:\Spark\spark-3.2.1-bin-hadoop3.2\spark-3.2.1-bin-hadoop3.2\python\pyspark\context.py", line 209, in _do_init
self._jsc = jsc or self._initialize_context(self._conf._jconf)
File "C:\Spark\spark-3.2.1-bin-hadoop3.2\spark-3.2.1-bin-hadoop3.2\python\pyspark\context.py", line 329, in _initialize_context
return self._jvm.JavaSparkContext(jconf)
File "C:\Spark\spark-3.2.1-bin-hadoop3.2\spark-3.2.1-bin-hadoop3.2\python\lib\py4j-0.10.9.3-src.zip\py4j\java_gateway.py", line 1585, in __call__
return_value = get_return_value(
File "C:\Spark\spark-3.2.1-bin-hadoop3.2\spark-3.2.1-bin-hadoop3.2\python\lib\py4j-0.10.9.3-src.zip\py4j\protocol.py", line 326, in get_return_value
raise Py4JJavaError(
py4j.protocol.Py4JJavaError: An error occurred while calling None.org.apache.spark.api.java.JavaSparkContext.
: java.lang.NoClassDefFoundError: Could not initialize class org.apache.spark.storage.StorageUtils$
at org.apache.spark.storage.BlockManagerMasterEndpoint.<init>(BlockManagerMasterEndpoint.scala:110)
at org.apache.spark.SparkEnv$.$anonfun$create$9(SparkEnv.scala:348)
at org.apache.spark.SparkEnv$.registerOrLookupEndpoint$1(SparkEnv.scala:287)
at org.apache.spark.SparkEnv$.create(SparkEnv.scala:336)
at org.apache.spark.SparkEnv$.createDriverEnv(SparkEnv.scala:191)
at org.apache.spark.SparkContext.createSparkEnv(SparkContext.scala:277)
at org.apache.spark.SparkContext.<init>(SparkContext.scala:460)
at org.apache.spark.api.java.JavaSparkContext.<init>(JavaSparkContext.scala:58)
at java.base/jdk.internal.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method)
at java.base/jdk.internal.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:77)
at java.base/jdk.internal.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45)
at java.base/java.lang.reflect.Constructor.newInstanceWithCaller(Constructor.java:499)
at java.base/java.lang.reflect.Constructor.newInstance(Constructor.java:480)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:247)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:238)
at py4j.commands.ConstructorCommand.invokeConstructor(ConstructorCommand.java:80)
at py4j.commands.ConstructorCommand.execute(ConstructorCommand.java:69)
at py4j.ClientServerConnection.waitForCommands(ClientServerConnection.java:182)
at py4j.ClientServerConnection.run(ClientServerConnection.java:106)
at java.base/java.lang.Thread.run(Thread.java:833)
C:\Spark\spark-3.2.1-bin-hadoop3.2\spark-3.2.1-bin-hadoop3.2\bin>SUCCESS: The process with PID 21928 (child process of PID 14900) has been terminated.
SUCCESS: The process with PID 14900 (child process of PID 31720) has been terminated.
SUCCESS: The process with PID 31720 (child process of PID 10468) has been terminated.

AWS Glue Job Method pyWriteDynamicFrame does not exist

My goal is to read dataframe from existing catalog table, make some transformations and create a new table out of it. So according to https://docs.aws.amazon.com/glue/latest/dg/update-from-job.html, I use the sink.writeFrame method:
datasource0 = glueContext.create_dynamic_frame.from_catalog(database = "my_db", table_name = "table1", transformation_ctx = "datasource0")
datasource1 = datasource0.toDF().withColumn("date", current_date().cast("string"))
datasource2 = DynamicFrame.fromDF(datasource1, glueContext, "datasource2")
sink = glueContext.getSink(connection_type="s3", path="s3://my_bucket/output", enableUpdateCatalog=True)
sink.setFormat("json")
sink.setCatalogInfo(catalogDatabase='my_db', catalogTableName='table2')
sink.writeFrame(datasource2)
job.commit()
But as a result I get a misleading error, that method pyWriteDynamicFrame doesn't exist:
Traceback (most recent call last):
File "/tmp/test", line 39, in <module>
sink.writeFrame(datasource1)
File "/opt/amazon/lib/python3.6/site-packages/awsglue/data_sink.py", line 31, in writeFrame
return DynamicFrame(self._jsink.pyWriteDynamicFrame(dynamic_frame._jdf, callsite(), info), dynamic_frame.glue_ctx, dynamic_frame.name + "_errors")
File "/opt/amazon/spark/python/lib/py4j-0.10.7-src.zip/py4j/java_gateway.py", line 1257, in __call__
answer, self.gateway_client, self.target_id, self.name)
File "/opt/amazon/spark/python/lib/pyspark.zip/pyspark/sql/utils.py", line 63, in deco
return f(*a, **kw)
File "/opt/amazon/spark/python/lib/py4j-0.10.7-src.zip/py4j/protocol.py", line 332, in get_return_value
format(target_id, ".", name, value))
py4j.protocol.Py4JError: An error occurred while calling o75.pyWriteDynamicFrame. Trace:
py4j.Py4JException: Method pyWriteDynamicFrame([class org.apache.spark.sql.Dataset, class java.lang.String, class java.lang.String]) does not exist
at py4j.reflection.ReflectionEngine.getMethod(ReflectionEngine.java:318)
at py4j.reflection.ReflectionEngine.getMethod(ReflectionEngine.java:326)
at py4j.Gateway.invoke(Gateway.java:274)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:238)
at java.lang.Thread.run(Thread.java:748)
Versions:
Spark: 2.4, Python: 3, Glue: 2
You can use Glue native transformation Map class which will builds a new DynamicFrame by applying a function to all records in the input DynamicFrame.
So in your case to derive a column date you can use below snippet to achieve the it.
from datetime import datetime
def addDate(d):
d["date"] = datetime.today()
return d
datasource1 = Map.apply(frame = datasource0, f = addDate)

Nativescript and angular 2 app breaks when making http calls

On updating to tns core module 2.2.0 and angular rc4 (officially released version by telerik), My app can no longer make http calls to a server, I keep getting this error
com.tns.NativeScriptException:
Calling js method onClick failed
EXCEPTION: Error in /data/data/org.nativescript.EatSafe/files/app/pages/login/login.html:5:75
ORIGINAL EXCEPTION: Error: not implemented
ORIGINAL STACKTRACE:
Error: not implemented
at NativeScriptDomAdapter.Parse5DomAdapter.getCookie (/data/data/org.nativescript.EatSafe/files/app/tns_modules/#angular/platform-server/src/parse5_adapter.js:619:68)
at CookieXSRFStrategy.configureRequest (/data/data/org.nativescript.EatSafe/files/app/tns_modules/#angular/http/src/backends/xhr_backend.js:150:82)
at XHRBackend.createConnection (/data/data/org.nativescript.EatSafe/files/app/tns_modules/#angular/http/src/backends/xhr_backend.js:165:28)
at httpRequest (/data/data/org.nativescript.EatSafe/files/app/tns_modules/#angular/http/src/http.js:22:20)
at Http.post (/data/data/org.nativescript.EatSafe/files/app/tns_modules/#angular/http/src/http.js:78:16)
at UserService.signin (/data/data/org.nativescript.EatSafe/files/app/shared/services/user.service.js:13:27)
at LoginComponent.login (/data/data/org.nativescript.EatSafe/files/app/pages/login/login.component.js:31:27)
at DebugAppView._View_LoginComponent0._handle_tap_8_0 (LoginComponent.template.js:355:28)
at /data/data/org.nativescript.EatSafe/files/app/tns_modules/#angular/core/src/linker/view.js:375:24
at /data/data/org.nativescript.EatSafe/files/app/tns_modules/nativescript-angular/renderer.js:204:26
ERROR CONTEXT:
[object Object]
File: "/data/data/org.nativescript.EatSafe/files/app/tns_modules/#angular/core/src/linker/view.js, line: 365, column: 16
StackTrace:
Frame: function:'DebugAppView._rethrowWithContext', file:'/data/data/org.nativescript.EatSafe/files/app/tns_modules/#angular/core/src/linker/view.js', line: 365, column: 17
Frame: function:'', file:'/data/data/org.nativescript.EatSafe/files/app/tns_modules/#angular/core/src/linker/view.js', line: 378, column: 23
Frame: function:'', file:'/data/data/org.nativescript.EatSafe/files/app/tns_modules/nativescript-angular/renderer.js', line: 204, column: 26
Frame: function:'ZoneDelegate.invoke', file:'/data/data/org.nativescript.EatSafe/files/app/tns_modules/zone.js/dist/zone-node.js', line: 290, column: 29
Frame: function:'NgZoneImpl.inner.inner.fork.onInvoke', file:'/data/data/org.nativescript.EatSafe/files/app/tns_modules/#angular/core/src/zone/ng_zone_impl.js', line: 53, column: 41
Frame: function:'ZoneDelegate.invoke', file:'/data/data/org.nativescript.EatSafe/files/app/tns_modules/zone.js/dist/zone-node.js', line: 289, column: 35
Frame: function:'Zone.run', file:'/data/data/org.nativescript.EatSafe/files/app/tns_modules/zone.js/dist/zone-node.js', line: 183, column: 44
Frame: function:'NgZoneImpl.runInner', file:'/data/data/org.nativescript.EatSafe/files/app/tns_modules/#angular/core/src/zone/ng_zone_impl.js', line: 84, column: 71
Frame: function:'NgZone.run', file:'/data/data/org.nativescript.EatSafe/files/app/tns_modules/#angular/core/src/zone/ng_zone.js', line: 235, column: 66
Frame: function:'zonedCallback', file:'/data/data/org.nativescript.EatSafe/files/app/tns_modules/nativescript-angular/renderer.js', line: 203, column: 24
Frame: function:'Observable.notify', file:'/data/data/org.nativescript.EatSafe/files/app/tns_modules/data/observable/observable.js', line: 174, column: 23
Frame: function:'Observable._emit', file:'/data/data/org.nativescript.EatSafe/files/app/tns_modules/data/observable/observable.js', line: 193, column: 18
Frame: function:'_android.setOnClickListener.android.view.View.OnClickListener.onClick', file:'/data/data/org.nativescript.EatSafe/files/app/tns_modules/ui/button/button.js', line: 33, column: 32
at com.tns.Runtime.callJSMethodNative(Native Method)
at com.tns.Runtime.dispatchCallJSMethodNative(Runtime.java:862)
at com.tns.Runtime.callJSMethodImpl(Runtime.java:727)
at com.tns.Runtime.callJSMethod(Runtime.java:713)
at com.tns.Runtime.callJSMethod(Runtime.java:694)
at com.tns.Runtime.callJSMethod(Runtime.java:684)
at com.tns.gen.android.view.View_OnClickListener.onClick(View_OnClickListener.java:11)
at android.view.View.performClick(View.java:5233)
at android.view.View$PerformClick.run(View.java:21209)
at android.os.Handler.handleCallback(Handler.java:739)
at android.os.Handler.dispatchMessage(Handler.java:95)
at android.os.Looper.loop(Looper.java:152)
at android.app.ActivityThread.main(ActivityThread.java:5507)
at java.lang.reflect.Method.invoke(Native Method)
at com.android.internal.os.ZygoteInit$MethodAndArgsCaller.run(ZygoteInit.java:726)
at com.android.internal.os.ZygoteInit.main(ZygoteInit.java:616)
I have been trying to look online for a release log of the update to see if there are any breaking changes, but to no avail. does anyone have any pointers on how to make http calls with the new nativescript angular updates?
Thank you
I got this fixed by importing in app.moudle.ts the following
import {NativeScriptHttpModule} from 'nativescript-angular/http';
And then
imports: [NativeScriptHttpModule]
You need this code in your main.ts file
import {Parse5DomAdapter} from '#angular/platform-server/src/parse5_adapter';
(<any>Parse5DomAdapter).prototype.getCookie = function (name) { return null; };