For simplicity, I will consider the 2-D case but my question is well applicable to n-dimensions. I have a region S in 2-D that is closed and bounded and has no holes. The only thing I know about S is a bunch of data points that lie in S. Essentially, these points fill-up S; the more points I have, the more accurate my representation of S is. From these data points (x,y) in 2-D, I can easily approximate xL and xU such that all points (x,y) in S satisfy xL <= x <= xU.
I am wondering if there is a function or method in Matlab that enables me, for a particular point (x,y) in S, to give me the bounds of y approximated from these data points. In particular, I am looking for functions yL(x) and yU(x) such that yL(x) <= y <= yU(x) for any x such that xL <= x <= xU.
Now, I am not necessarily looking for a function in matlab like boundary which simply connects the points that are literally on the boundary of the data set. I am rather looking for the "best fit" boundary given the scattered plot that I have.
Suggestions appreciated!
Related
I have an image of a cytoskeleton. There are a lot of small objects inside and I want to calculate the length between all of them in every axis and to get a matrix with all this data. I am trying to do this in matlab.
My final aim is to figure out if there is any axis with a constant distance between the object.
I've tried bwdist and to use connected components without any luck.
Do you have any other ideas?
So, the end goal is that you want to globally stretch this image in a certain direction (linearly) so that the distances between nearest pairs end up the closest together, hopefully the same? Or may you do more complex stretching ? (note that with arbitrarily complex one you can always make it work :) )
If linear global one, distance in x' and y' is going to be a simple multiplication of the old distance in x and y, applied to every pair of points. So, the final euclidean distance will end up being sqrt((SX*x)^2 + (SY*y)^2), with SX being stretch in x and SY stretch in y; X and Y are distances in X and Y between pairs of points.
If you are interested in just "the same" part, solution is not so difficult:
Find all objects of interest and put their X and Y coordinates in a N*2 matrix.
Calculate distances between all pairs of objects in X and Y. You will end up with 2 matrices sized N*N (with 0 on the diagonal, symmetric and real, not sure what is the name for that type of matrix).
Find minimum distance (say this is between A an B).
You probably already have this. Now:
Take C. Make N-1 transformations, which all end up in C->nearestToC = A->B. It is a simple system of equations, you have X1^2*SX^2+Y1^2*SY^2 = X2^2*SX^2+Y2*SY^2.
So, first say A->B = C->A, then A->B = C->B, then A->B = C->D etc etc. Make sure transformation is normalized => SX^2 + SY^2 = 1. If it cannot be found, the only valid transformation is SX = SY = 0 which means you don't have solution here. Obviously, SX and SY need to be real.
Note that this solution is unique except in case where X1 = X2 and Y1 = Y2. In this case, grab some other point than C to find this transformation.
For each transformation check the remaining points and find all nearest neighbours of them. If distance is always the same as these 2 (to a given tolerance), great, you found your transformation. If not, this transformation does not work and you should continue with the next one.
If you want a transformation that minimizes variations between distances (but doesn't require them to be nearly equal), I would do some optimization method and search for a minimum - I don't know how to find an exact solution otherwise. I would pick this also in case you don't have linear or global stretch.
If i understand your question correctly, the first step is to obtain all of the objects center of mass points in the image as (x,y) coordinates. Then, you can easily compute all of the distances between all points. I suggest taking a look on a histogram of those distances which may provide some information as to the nature of distance distribution (for example if it is uniformly random, or are there any patterns that appear).
Obtaining the center of mass points is not an easy task, consider transforming the image into a binary one, or some sort of background subtraction with blob detection or/and edge detector.
For building a histogram you can use histogram.
I want to determine a point in space by geometry and I have math computations that gives me several theta values. After evaluating the theta values, I could get N 1 x 3 dimension matrix where N is the number of theta evaluated. Since I have my targeted point, I only need to decide which of the matrices is closest to the target with adequate focus on the three coordinates (x,y,z).
Take a view of the analysis in the figure below:
Fig 1: Determining Closest Point with all points having minimal error
It can easily be seen that the third matrix is closest using sum(abs(Matrix[x,y,z])). However, if the method is applied on another figure given below, obviously, the result is wrong.
Fig 2: One Point has closest values with 2-axes of the reference point
Looking at point B, it is closer to the reference point on y-,z- axes but just that it strayed greatly on x-axis.
So how can I evaluate the matrices and select the closest one to point of reference and adequate emphasis will be on error differences in all coordinates (x,y,z)?
If your results is in terms of (x,y,z), why don't evaluate the euclidean distance of each matrix you have obtained from the reference point?
Sort of matlab code:
Ref_point = [48.98, 20.56, -1.44];
Curr_point = [x,y,z];
Xd = (x-Ref_point(1))^2 ;
Yd = (y-Ref_point(2))^2 ;
Zd = (z-Ref_point(3))^2 ;
distance = sqrt(Xd + Yd + Zd);
%find the minimum distance
I need to solve a minimization problem with Matlab and I'm wondering which is the easiest solution. All the potential solutions that I've been thinking in require lot of programming effort.
Suppose that I have a lat/long coordinate point (A,B), what I need is to search for the nearest point to this one in a map of lat/lon coordinates.
In particular, the latitude and longitude arrays are two matrices of 2030x1354 elements (1km distance) and the idea is to find the unique indexes in those matrices that minimize the distance to the coordinates (A,B), i.e., to find the closest values to the given coordinates (A,B).
Any help would be very appreciated.
Thanks!
This is always a fun one :)
First off: Mohsen Nosratinia's answer is OK, as long as
you don't need to know the actual distance
you can guarantee with absolute certainty that you will never go near the polar regions
and will never go near the ±180° meridian
For a given latitude, -180° and +180° longitude are actually the same point, so simply looking at differences between angles is not sufficient. This will be more of a problem in the polar regions, since large longitude differences there will have less of an impact on the actual distance.
Spherical coordinates are very useful and practical for purposes of navigation, mapping, and that sort of thing. For spatial computations however, like the on-surface distances you are trying to compute, spherical coordinates are actually pretty cumbersome to work with.
Although it is possible to do such calculations using the angles directly, I personally don't consider it very practical: you often have to have a strong background in spherical trigonometry, and considerable experience to know its many pitfalls -- very often there are instabilities or "special points" you need to work around (the poles, for example), quadrant ambiguities you need to consider because of trig functions you've introduced, etc.
I've learned to do all this in university, but I also learned that the spherical trig approach often introduces complexity that mathematically speaking is not strictly required, in other words, the spherical trig is not the simplest representation of the underlying problem.
For example, your distance problem is pretty trivial if you convert your latitudes and longitudes to 3D Cartesian X,Y,Z coordinates, and then find the distances through the simple formula
distance (a, b) = R · arccos( a/|a| · b/|b| )
where a and b are two such Cartesian vectors on the sphere. Note that |a| = |b| = R, with R = 6371 the radius of Earth.
In MATLAB code:
% Some example coordinates (degrees are assumed)
lon = 360*rand(2030, 1354);
lat = 180*rand(2030, 1354) - 90;
% Your point of interest
P = [4, 54];
% Radius of Earth
RE = 6371;
% Convert the array of lat/lon coordinates to Cartesian vectors
% NOTE: sph2cart expects radians
% NOTE: use radius 1, so we don't have to normalize the vectors
[X,Y,Z] = sph2cart( lon*pi/180, lat*pi/180, 1);
% Same for your point of interest
[xP,yP,zP] = sph2cart(P(1)*pi/180, P(2)*pi/180, 1);
% The minimum distance, and the linear index where that distance was found
% NOTE: force the dot product into the interval [-1 +1]. This prevents
% slight overshoots due to numerical artifacts
dotProd = xP*X(:) + yP*Y(:) + zP*Z(:);
[minDist, index] = min( RE*acos( min(max(-1,dotProd),1) ) );
% Convert that linear index to 2D subscripts
[ii,jj] = ind2sub(size(lon), index)
If you insist on skipping the conversion to Cartesian and use lat/lon directly, you'll have to use the Haversine formula, as outlined on this website for example, which is also the method used by distance() from the mapping toolbox.
Now, all of this is valid for the whole Earth, provided you find the smooth spherical Earth accurate enough an approximation. If you want to include the Earth's oblateness or some higher order shape model (or God forbid, distances including terrain), you need to do far more complicated stuff. But I don't think that is your goal here :)
PS - I wouldn't be surprised that if you would write everything out that I did, you'll probably re-discover the Haversine formula. I just prefer to be able to calculate something as simple as distances along the sphere from first principles alone, rather than from some black box formula you had implanted in your head sometime long ago :)
Let Lat and Long denote latitude and longitude matrices, then
dist2=sum(bsxfun(#minus, cat(3,A,B), cat(3,Lat,Long)).^2,3);
[I,J]=find(dist2==min(dist2(:)));
I and J contain the indices in A and B that correspond to nearest point. Note that if there are multiple answers, I and J will not be scalar values, but vectors.
I have a data-set that has four columns [X Y Z C]. I would like to find all the C values that are in a given sphere centered at [X, Y, Z] with a radius r. What is the best approach to address this problem? Should I use the clusterdata command?
Here is one solution that uses naively euclidean distance:
say V = [X Y Z C] is your dataset, Center = [x,y,z] is the center of the sphere, then
dist = bsxfun(#minus,V(:,1:3),Center); % // finds the distance vectors
% // between the points and the center
dist = sum(dist.^2,2); % // evaluate the squares of the euclidean distances (scalars)
idx = (dist < r^2); % // Find the indexes of the matching points
The good C values are
good = V(idx,4); % // here I kept just the C column
This is not "cluster analysis": You do not attempt to discover structure in your data.
Instead, what you are doing, is commonly called a "range query" or "radius query". In classic database terms, a SELECT, with a distance selector.
You probably want to define your sphere using euclidean distance. For computational purposes, it actually is beneficial to instead of squared Euclidean, by simply taking the square of your radius.
I don't use matlab, but there must be tons of examples of how to compute the distance of each instance in a data set from a query point, and then selecting those objects where the distance is small enough.
I don't know if there is any good index structures package for Matlab. But in general, at 3D, this can be well accelerated with index structures. Computing all distances is O(n), but with an index structure only O(log n).
I wanted to generate a set of coordinates distributed uniformly at random within a ball of radius R. Is there any way to do this in Matlab without for loops, in a matrix-like form?
Thanks
UPDATE:
I'm sorry for the confusion. I only need to generate n points uniformly at random over a circle of radius R, not a sphere.
the correct answer is here http://mathworld.wolfram.com/DiskPointPicking.html. The distribution is known as "Disk point picking"
I was about to mark this as a duplicate of a previous question on generating uniform distribution of points in a sphere, but I think you deserve the benefit of doubt here, as although there's a matlab script in the question, most of that thread is python.
This little function given in the question (and I'm pasting it directly from there), is what you need.
function X = randsphere(m,n,r)
% This function returns an m by n array, X, in which
% each of the m rows has the n Cartesian coordinates
% of a random point uniformly-distributed over the
% interior of an n-dimensional hypersphere with
% radius r and center at the origin. The function
% 'randn' is initially used to generate m sets of n
% random variables with independent multivariate
% normal distribution, with mean 0 and variance 1.
% Then the incomplete gamma function, 'gammainc',
% is used to map these points radially to fit in the
% hypersphere of finite radius r with a uniform % spatial distribution.
% Roger Stafford - 12/23/05
X = randn(m,n);
s2 = sum(X.^2,2);
X = X.*repmat(r*(gammainc(s2/2,n/2).^(1/n))./sqrt(s2),1,n);
To learn why you can't just use uniform random variable for all three co-ordinates as one might think is the correct way, give this article a read.
For the sake of completeness, here is some MATLAB code for a point-culling solution. It generates a set of random points within a unit cube, removes points that are outside a unit sphere, and scales the coordinate points up to fill a sphere of radius R:
XYZ = rand(1000,3)-0.5; %# 1000 random 3-D coordinates
index = (sum(XYZ.^2,2) <= 0.25); %# Find the points inside the unit sphere
XYZ = 2*R.*XYZ(index,:); %# Remove points and scale the coordinates
One key drawback to this point-culling method is that it makes it difficult to generate a specific number of points. For example, if you want to generate 1000 points within your sphere, how many do you have to create in the cube before culling them? If you scale up the number of points generated in the cube by a factor of 6/pi (i.e. the ratio of the volume of a unit cube to a unit sphere), then you can get close to the number of desired points in the sphere. However, since we're dealing with (pseudo)random numbers after all, we can never be absolutely certain we will generate enough points that fall in the sphere.
In short, if you want to generate a specific number of points, I'd try out one of the other solutions suggested. Otherwise, the point-culling solution is nice and simple.
Not sure if I understand your question correctly, but can't you just generate any random number inside a sphere by setting φ, θ and r, assigned to random numbers?