How to avoid missing historic delete events with the watch api - kubernetes

I'm implementing a custom resource controller using the watch API. It needs to create/delete objects in aws when objects are created/deleted in kubernetes.
When it starts up the watch, it receives a list of historic events. However, I noticed that if an object is created and then deleted, these events "cancel out" in the historic event stream. That is, when I start a watch, instead of seeing an ADDED event and a DELETED event for the given object, I see no events at all, as though it never existed. This means that if an object is deleted while the controller is down, it will completely miss this delete event when it starts back up.
For controllers that need to take an action when a kubernetes object is deleted (for example, deleting an object in AWS), what is the recommended approach? Is there a way to make kubernetes keep DELETED events? Is it just expected that controllers work by polling the list of all objects in all namespaces rather than using the watch API?

In case you need to synchronize states or list of existing objects in one system with objects in another system, you should be able to get the lists of objects on both systems, compare them, and deal with the difference.
If you rely only on watching instant events like CREATE and DELETE, you will end up with unsynchronized systems sooner or later.
The only reliable source of information about Kubernetes apiserver events I can imagine is the Audit log.

Related

CQRS/ES AR deletion command

Let's say I've an event sourced blog engine application in which I can create, publish and un-publish posts... I'm now wondering how to implement the post deletion command. Should I create a post deletion event, store it in the event store, and then, listen to that event to remove the projection, or should I fully delete the post, including any related events from the event store? The problem with the second solution is that I wouldn't be able to rolling back the deletion and I'm pretty sure that removing events from the events store is a really bad practice with event sourced applications.
Thank you for your advise.
If you are in a domain where you are using event sourcing, presumably because there is business value in temporal queries, then you are probably going to want soft deletes, rather than actually destroying the history you have accumulated.
See also: Don't Delete -- Just Don't.

Client Interaction With Event Sourcing

I have been recently looking into event sourcing and have some questions about the interactions with clients.
So event-sourcing sounds great. decoupling all your microservices, keeping your information in immutable events and formulating a stored states off of that to fit your needs is really handy. Having event propagate through your system/services and reacting to events in their own way is all fine.
The issue i am having lies with understanding the client interaction.
So you want clients to interact with the system, but they need to do this now by events. They can not longer submit a state to mutate your existing one.
So the question is how do clients fire off specific event and interact with (not only an event based system) but a system based on event sourcing.
My understanding is that you no longer use the rest api as resources (which you can get, update, delete, etc.. handling them as a resource), but you instead post to an endpoint as an event.
So how do these endpoint work?
my second question is how does the user get responses back?
for instance lets say we have an event to place an order.
your going to fire off an event an its going to do its thing. Again my understanding is that you dont now validate the request, e.g. checking if the user ordering the order has enough money, but instead fire it to be place and it will be handled in the system.
e.g. it will not be
- order placed
- this will be picked up by the pricing service and it will either fire an reserved money or money exceeded event based on if the user can afford it.
- The order service will then listen for those and then mark the order as denied or not enough credit.
So because this is a async process and the user has fired and forgotten, how do you then show the user it has either failed or succeeded? do you show them an order confirmation page with the order status as it is (even if its pending)
or do you poll it until it changes (web sockets or something).
I'm sorry if a lot of this is all nonsense, I am still learning about this architecture and am very much in the mindset of a monolith with REST responses.
Any help would be appreciated.
The issue i am having lies with understanding the client interaction.
Some of the issue may be understanding, but I promise you a fair share of the issue is that the literature sucks.
In particular, the word "Event" gets re-used a lot of different ways. If you aren't paying very careful attention to which meaning is being used, you are going to get knotted.
Event Sourcing is really about persistence - how does a micro-server store its private copy of state for later re-use? Instead of destructively overwriting our previous state, we write new information that links back to the previous state. If you imagine each microservice storing each change of state as a commit in its own git repository, you are in the right ballpark.
That's a different animal from using Event Messages to communicate information between one microservice and another.
There's some obvious overlap, of course, because the one message that you are likely to share with other microservices is "I just changed state".
So how do these endpoint work?
The same way that web forms do. I send you a representation of a form, the client displays the form to you. You fill in your data and submit the form, the client processes the contents of the form, and sends back to me an HTTP request with a "FormSubmitted" event in the message body.
You can achieve similar results by sending new representations of the state, but its a bit error prone to strip away the semantic intent and then try to guess it again on the server. So you are more likely to instead see task based user interfaces, or protocols that clearly identify the semantics of the change.
When the outside world is the authority for some piece of data (a shopper's shipping address, for example), you are more likely to see the more traditional "just edit the existing representation" approach.
So because this is a async process and the user has fired and forgotten, how do you then show the user it has either failed or succeeded?
Fire and forget really doesn't work for a distributed protocol on an unreliable network. In most cases, at-least-once delivery is important, so Fire until verified is the more common option. The initial acknowledgement of the message might be something like 202 Accepted -- "We received your message, we wrote it down, here's our current progress, here are some links you can fetch for progress reports".
It doesnt seem to me that event-sourcing fits with the traditional REST model where you CRUD a resource.
Jim Webber's 2011 talk may help to prune away the noise. A REST API is a disguise that your domain model wears; you exchange messages about manipulating resources, and as a side effect your domain model does useful work.
One way you could do this that would look more "traditional" is to work with representations of the event stream. I do a GET /08ff2ec9-a9ad-4be2-9793-18e232dbe615 and it returns me a representation of a list of events. I append a new event onto the end of that list, and PUT /08ff2ec9-a9ad-4be2-9793-18e232dbe615, and interesting side effects happen. Or perhaps I instead create a patch document that describes my change, and PATCH /08ff2ec9-a9ad-4be2-9793-18e232dbe615.
But more likely, I would do something else -- instead of GET /08ff2ec9-a9ad-4be2-9793-18e232dbe615 to fetch a representation of the list of events, I'd probably GET /08ff2ec9-a9ad-4be2-9793-18e232dbe615 to fetch a representation of available protocols - which is to say, a document filled with hyper links. From there, I might GET /08ff2ec9-a9ad-4be2-9793-18e232dbe615/603766ac-92af-47f3-8265-16f003ce5a09 to obtain a representation of the data collection form. I fill in the details of my event, submit the form, and POST /08ff2ec9-a9ad-4be2-9793-18e232dbe615 the form data to the server.
You can, of course, use any spelling you like for the URI.
In the first case, we need something like an HTTP capable document editor; the second case uses something more like a web browser.
If there were lots of different kinds of events, then the second case might well have lots of different form resources, all submitting POST /08ff2ec9-a9ad-4be2-9793-18e232dbe615 requests.
(You don't have to have all of the forms submitting to the same URI, but there are advantages to consider).
In a non event sourcing pattern I guess that would be first put into the database, then the event gets risen.
Even when you aren't event sourcing, there may still be some advantages to committing events to your durable store before emitting them. See Pat Helland: Data on the Outside versus Data on the Inside.
So you want clients to interact with the system, but they need to do this now by events.
Clients don't have to. Client may even not be aware of the underlying event store.
There are a number of trade-offs to consider and decisions to take when implementing an event-sourced system. To start with you can try to name a few pre computer era examples of event-sourced systems and look at their non-functional characteristics.
So the question is how do clients fire off specific event
Clients don't send events. They rather should express an intent (a command). Then it is the responsibility of the event-sourced system to validate the intent and either reject it or accept and store the corresponding event. It would mean that an intent to change the system's state was accepted and the stored event confirms the change.
My understanding is that you no longer use the rest api as resources
REST is one of the options. You just consider different things as resources. A command can be a REST resource. An event-sourced entity can be a resource, to which you POST a command. If you like it async - you can later GET the command to check its status. You can GET an entity to know its current state. You cant GET events from a class of entities as a means of subscription.
If we are talking about an end user, then most likely it doesn't deal with the event store directly. There is some third tier in between, which does CQRS. From a user client perspective it can be provided with REST, GraphQL, SOAP, gRPC or event e-mail. Whatever transport solution you find suitable. Command-processing part from CQRS is what specifically domain-driven. It decides which intent to accept and which to reject.
Event store itself is responsible for the data consistency. I.e. it should not allow two concurrent event leading to invalid state be published. This is what pre-computer event-sourced systems are good at. You usually have some physical object as an entity, so you lock for update by just getting hand of it.
Then an end-user client usually reads from some prepared read model. The responsibility of a read (R in CQRS) component is to prepare read-optimised data for clients. This data may come from multiple event-sourced of the same or different classes. Again, client may interact with a read model with whatever transport is suitable.
While an event-store is consistent and consistent immediately, a read model is eventually consistent. But it's up to you to tune this eventuality.
Just try to throw REST out of the architecture for a while. Consider it a one of available transport options - that may help to look at the root.

How to watch a Pod api endpoint in a Kubernetes Operator using the SDK

Description
I have a CR associated with a POD with a container that is exposing an API, eg:
/available
returning for example
{"available":"true"}
Is there a way to create a controller watcher on that API call that whenever the response changes will trigger the reconcile function?
I believe it could be possible using a channel with the controller watcher, but I don't see any similar examples out there
Using
Kubernetes operator-sdk version v0.5.0+git
I'm afraid it's not as easy as you hope. The Kubernetes controller objects react to add/edit/delete operations of some kind of resource in the cluster. A value exposed inside an API of something running inside the Pod is not visible in the resource database. There is not event going off, notifying about the change either.
I see two things you can consider doing:
Create a regular controller that would have the reconcile function triggered fairly often, but would check the availability value inside it's reconcile function. If it changed, it would do something, if it didn't it would do nothing.
Just create a separate task, outside the controller domain, that would monitor this API value and do something.
Controllers work using notifications, they don't actively watch for changes, they are notified about them. That's different than what you want to do - periodically check the API response.

Update akka cluster entry points data

I am working on a system that utilizes an Akka cluster. The dilemma that I am facing is how to update data on entry points. I have the following structure:
[Load Balancer] -> [Entry Point](spray powered) -> [Workers]
On the entry point I need to keep a list of users that are allowed to access data, in other words I need to keep a list with, let's say emails. However this list has to be updated frequently when new users are authorized or removed.
What would be the best approach to tackle this problem? I was thinking about just switching this container of e-mails/IDs to a mutable one, but then the question is whether the system will lock this data on event processing and how this affects performance.
Any recommendations would be great!
Update:
- distribution of a new user will be done via a regular spray rest request. From the outside authorized for such system requests request will be made with security keys and a user ID to be added to the list
- there are multiple nodes, each has spray rest entry point
- speed doesn't matter as long as it is a couple seconds
- order doesn't matter.
The system will just a get a message on load balancer that it has to add one more ID to the list of users. Because of load balancer it will end up on one of the entry point spray nodes. It has to update it's own list of IDs and also broad cast to all other entry points in the app(basically all from the load balancer list) the required update.
Hope this clarifies better.
Ok here is a first draft.
Every spray endpoints must have the same "view" of the access list otherwise your requests could be refused depending on which endpoint they are a balanced to.
Therefore you need to have a referent with the official access list so you can recover from a crash and/or create a new spray node with an up-to-date access list.
You could create a singleton actor in your akka-cluster that would be responsible for reading and updating the access list from a persistent store.
Then using the distributed akka pub/sub extension you could create a distributed message bus where :
all the spray endpoints and the singleton actor as well subscribe to the channel "access update" for example. That way all the actors can keep their access list "synchronized".
when a spray endpoint received a request for adding or removing a user/access, it pushes a notification on the channel "access update". Every spray endpoints can update their access list and so the singleton update the persistent list in the store.
What do you think?

Core Data Sync - Tracking Deleted Objects

I'm setting up a basic sync service for an iPad application I'm developing. The goal is to have data consistent throughout several instances of the iPad app, as well as having a read-only version of the data on the web, hence rolling a custom solution.
The current flow is this:
Each entity has a 'created', 'modified' and 'UUID' field which are automatically updated by Core Data
On sync, each entity with a created or modified date after the last sync date is serialised into JSON and sent to the server
The server persists any changes to a MySQL database using the client-generated UUIDs as PKs (if there's a conflict, it just uses the most recently modified entity as the 'true' version, nothing fancy there) and sends back any updated entities to the client
The client then merges these changes back into its Core Data DB
This all seems to be working fine. My problem is how to track deleted objects using this method? I'm guessing I can add a 'deleted' flag to each entity and set this whenever a client deletes something, I can then push that change to the server with the rest of the sync data. Once the sync is complete then the client can actually delete these entities. My questions are:
Can I override Core Data's delete methods to automatically set this flag?
Will this require keeping all deleted entities indefinitely on the server? We'll have no way of knowing when every client has synced and actually deleted each entity (I'm not currently tracking client instances)
Is there a better way of doing this?
How about you keep a delta history table with UUID and created/updated/deleted field, maybe with a revision number for each update? So you keep a small check list of changes since your last successful sync.
That way, if you delete an object you could add an entry in the delta history table with the deleted UUID and mark it deleted. Same with created and updated objects, you only need to check the delta table to see what items you the server needs to delete, update, create, etc. You could even store every revision on the server to support rolling back to a previous version in the future if you feel like it.
I think a revision number is better than relying on client's clock that could potentially be changed manually.
You could use NSManagedObjectContext's insertedObjects, updatedObjects, deletedObjects methods to create the delta objects before every save procedure :)
My 2 cents
Whether or not you have to keep deleted objects on the server or not totally depends on your needs. You will need a deleted flag locally to mark as deleted for the sync, maybe also on the server depending on your desire to roll back.
I have taken care of this problem a few ways before. Here is one possibility:
When a client deletes something, just mark it to be deleted locally and delete from the server during the sync (at which point you can purge from core data). When other clients request to access that data, send back an HTTP 404 because you dont have the object any more. At that point the client can delete the entity locally. Now if a client requests a list of things and this object has been deleted, it will just be missing from the list of things he gets back so you can detect that and delete it. I do that in a client by creating an array of object IDs when I get a response from the server and deleting any local objects that don't have those IDs.
We have a deleted field on the server, but just to have the ability to roll back in case something is deleted by accident.
Of course you could return deleted objects to the client so they know to delete but if you don't want to keep a copy on the server, you would have to make some assumption that the clients would all update within a time frame. Then you could garbage collect after that time frame has expired.
I don't really like that solution though. If your data is too heavy to ask for all the objects for a complete sync, you could use your current merge strategy for creating and updating, and then run a separate call to check for deleted items. That call could simply ask for all IDs that the client should have on the device. It could delete the ones that don't exist. OR it could send all IDs on the client and get back a list of IDs to delete.
I think you have to provide more details about the nature of the data if you want a more opinionated suggestion.
Regarding your second question: You can design this so that the server doesn't have to keep deleted records around, if you want to. Let each app know if a given piece of data (based on its UUID) is stored on the server (e.g. add an existsOnServer property or similar). This starts out false when a new item is created in the app, but is set to true once it has been synced to the server for the first time. That way, if the app tries to sync later, but the UUID is not found, you can differentiate the two cases: If existsOnServer is false, then then this item is newly created and should be synced to the server, but if it is true then it can be taken to mean that it was already on the sever before, but has now been deleted, so you can delete it in the app too.
I'd probably argue against this approach, since it seems more error prone to me (I imagine a database or connection error incorrectly being interpreted as a deletion) and keeping records around on your server would usually not be a big deal, but it is possible. The "delta-approach" suggested by dzeikei could be used at the same time, so an update to a record that does not exist on the server signifies that it was deleted, while an insert does not.
You may take a look at Cross-Platform Data Synchronization by Dan Grover if you haven't. It's a very well written paper regarding synchronization and iOS.
About your questions:
You can avoid deleting a file in Core Data and set a 'deleted flag': just update the file instead of deleting it. You could make your own 'deleting' method that actually would call and update the flag on the record.
Keep always a last_sync and a last_updated for each record on the server and on each client. This way you'll always know when someone did change something anywhere and if that change was synced or not against the 'truth database'.
Keeping track of deleted files is a hard thing to do, I guess the best way to do it is keeping track of the history of syncs for each table, but is a difficult task. The easiest way, using this 'truth-database' kind of configuration is to flag the files, so that way yes, you should keep the data on the server as well as on the client.
during synchronization of data between tow table some records or deleted when the table rows are same. and when the rows are different the correctly synchronized, i used this Code click here on image