Dynamic chart that is updated each time step in paraview - paraview

I am using paraview to post process OpenFOAM results. I'm working on an open channel case. In addition to OpenFOAM run results, I've post-processed the flow rate through the inlet. Now I have a file that contains the flow rate in each time step.
So, in paraview, I want to plot the free surface in one render view and in another one I want to plot a dynamic chart for flow rate vs. time where the chart is only built up to the current time step.
If that's not possible in paraview, what is the better alternative that can create such chart and works with OpenFOAM?
Similar example to clarify the idea:
https://www.youtube.com/watch?v=Jnf9EGuHiV0

This looks like a job for "Plot Data Over Time" Filter.
You can find it in Filters -> Alphabetical -> Plot Data Over Time

Related

Find Average time in different flow paths

Im currently building a Anylogic model and want to calculate average time spent by customer in different flow paths (I have added the process flow below). In the picture i have named the paths i want to calculate the average time as path A and path B
Anyligic has dedicated blocks for this (although it can be done simply in code).
See in detail here.
The TimeMeasureEnd block contains a dataset.
The following code returns the average of the Y-axis values:
timeMeasureEnd.dataset.getYMean();
Good luck!

Is it possible to access forecast results in calculated measure?

I am trying to find time series outlier using Tableau forecast. I need to compare the actual value with the 95% confidence level in forecast results to determine if it is an outlier.
I understand I can view the forecast results on the chart. But I want to use the forecast results in calculated measure. Is there any way to do it? I cannot find any Tableau functions to retrieve the forecast results.
Xuefei. Doesn't look like there is a way currently, at least going by their help page - https://help.tableau.com/v2019.1/pro/desktop/en-us/forecast_options.htm. If you haven't already considered this - integration with R is easy and that way you could just model it in R (accounting for additive/multiplicative, trend/cyclicity/seasonality) and access the forecast values from R. Integration with Python is also supposed to be easy, although I haven't tried it myself.
Example of code in Tableau to incorporate R code for linear regression (this is the formula for the calc field in Tableau)
SCRIPT_REAL("
fv=log(.arg1)
fpri=.arg2
fit=lm(fv~fpri)
exp(fit$fitted)",SUM([Impressions]),SUM([CPM]))

How to plot all the stream lines in paraview?

I am simulating the case "Cavity driven lid" and I try to get all the stream lines with the stream tracer of paraview, but I only get the ones that intersect the reference line, and because of that there are vortices that are not visible. How can I see all the stream-lines in the domain?
Thanks a lot in adavance.
To add a little bit to Mathieu's answer, if you really want streamlines everywhere, then you can create a Stream Tracer With Custom Source (as Mathieu suggested) and set your data to both the Input and the Seed Source. That will create a streamline originating from every point in your dataset, which is pretty much what you asked for.
However, while you can do this, you will probably not be happy with the results. First of all, unless your data is trivially small, this will take a long time to compute and create a large amount of data. Even worse, the result will be so dense that you won't be able to see anything. You will get all those interesting streamlines through vortices, but they will be completely hidden by all the boring streamlines around them.
Thus, you are better off with trying to derive a data set that contains seed points that are likely to trace a stream through the vortices that you are interested in. One thing you might want to try is to compute the vorticity of your vector field (Gradient Of Unstructured Data Set when turning on advanced option Compute Vorticity), find the magnitude of that (Calculator), and then use the Threshold filter to pull out the cells with large vorticity. Then use that as your Seed Source.
Another (probably better) option if your data is 2D or you can extract an interesting surface along the flow of your data is to use the Surface LIC plugin. Details can be found at https://www.paraview.org/Wiki/ParaView/Line_Integral_Convolution.
You have to choose a representative source for your streamline.
You could use a "Sphere Source", so in the StreamTracer properties.
If that fails, you can use a StreamTracerWithCustomSource and use your own source that you will have to create yourself first.

Prediction/delay forcasting using Machine Learning?

I have a set of data for the past 5 years. Approx 7000 rows of data with features that are binary {yes/no} or are multi-classed {product A, B, C} A total of about 20+ features.
I am trying to make a program (or one time analysis project) to determine (predict) the product shipdate(shipping delay days) based on this historical data. I have 2 columns that indicate when a product was planned to be shipped and another column of when it was actually shipped! Currently.
I'm wondering how I can make a prediction program that determines based on the historic data when new data input of a product will expect to ship. I don't care about a getting a specific date but even just a program that can tell me number of delay days to add...
I took an ML class a while back and I wasn't sure how to start something like this. Any advice? Plus the closest thing to this I can think of is an image recognition assignment using NN. but that was too easy here I have to deal with a date instead of pixel white/black.... I used Matlab back in the day (I still know how to use it) but I just downloaded Weka data mining tool.
I was thinking of a neural network but I'm not sure how to set it up to have my program give me a the expected delay time (# of days/month) from the inputed ship date.
Basically,
I want to input (size = 5, prod = A, ....,expected ship date = jan 1st)
and the program returns the number of days to add as a delay onto my expected ship date given the historical trends...
Would appreciate any any help on how start something like this the correct/easiest/best way... Thanks in advance.
If you use weka, then get your input/label data into the arff format and then you try out all the different regressors (this is a regression problem after all). To avoid having to do too much programming quite yet (if you are just in an exploratory phase), use the weka experimenter which has a GUI for trying out a whole bunch of regressors on your dataset.
Then when you find one that does something expected and you want to do some more data analysis using MATLAB, then you can use a weka/matlab interface.

Combined XY realtime plots

Ok so there was confusion on what i was asking. I need help adjusting the algorithm I already have here. First part I need the X axis to be time and Y axis to be data read from file the user specifies the directory. This data file will be written every second so the graph should pause or graph 0 if there is no data and time is still running. The purpose of this program is that a script in linux will write to a file cpu, memory and power consumption and I have to graph that.
You can add multiple TimeSeries to a TimeSeriesCollection, as shown here.