CTE RECURSIVE optimization, how to? - postgresql

I need to optimize the performance of a commom WITH RECURSIVE query... We can limit the depth of the tree and decompose in many updates, and can also change representation (use array)... I try some options but perhaps there are a "classic optimization solution" that I'm not realizing.
All details
There are a t_up table, to be updated, with a composit primary key (pk1,pk2), one attribute attr and an array of references to primary keys... And a unnested representation t_scan, with the references; like this:
pk1 | pk2 | attr | ref_pk1 | ref_pk2
n | 123 | 1 | |
n | 456 | 2 | |
r | 123 | 1 | w | 123
w | 123 | 5 | n | 456
r | 456 | 2 | n | 123
r | 123 | 1 | n | 111
n | 111 | 4 | |
... | ...| ... | ... | ...
There are no loops.
UPDATE t_up SET x = pairs
FROM (
WITH RECURSIVE tree as (
SELECT pk1, pk2, attr, ref_pk1, ref_pk2,
array[array[0,0]]::bigint[] as all_refs
FROM t_scan
UNION ALL
SELECT c.pk1, c.pk2, c.attr, c.ref_pk1, c.ref_pk2
,p.all_refs || array[c.attr,c.pk2]
FROM t_scan c JOIN tree p
ON c.ref_pk1=p.pk1 AND c.ref_pk2=p.pk2 AND c.pk2!=p.pk2
AND array_length(p.all_refs,1)<5 -- 5 or 6 avoiding endless loops
)
SELECT pk1, pk2, array_agg_cat(all_refs) as pairs
FROM (
SELECT distinct pk1, pk2, all_refs
FROM tree
WHERE array_length(all_refs,1)>1 -- ignores initial array[0,0].
) t
GROUP BY 1,2
ORDER BY 1,2
) rec
WHERE rec.pk1=t_up.pk1 AND rec.pk2=t_up.pk2
;
To test:
CREATE TABLE t_scan(
pk1 char,pk2 bigint, attr bigint,
ref_pk1 char, ref_pk2 bigint
);
INSERT INTO t_scan VALUES
('n',123, 1 ,NULL,NULL),
('n',456, 2 ,NULL,NULL),
('r',123, 1 ,'w' ,123),
('w',123, 5 ,'n' ,456),
('r',456, 2 ,'n' ,123),
('r',123, 1 ,'n' ,111),
('n',111, 4 ,NULL,NULL);
Running only rec you will obtain:
pk1 | pk2 | pairs
-----+-----+-----------------
r | 123 | {{0,0},{1,123}}
r | 456 | {{0,0},{2,456}}
w | 123 | {{0,0},{5,123}}
But, unfortunately, to appreciate the "Big Data performance problem", you need to see it in a real database... I am preparing a public Github that run with OpenStreetMap Big Data.

Related

Aggregate all combinations of rows taken k at a time

I am trying to calculate an aggregate function for a field for a subset of rows in a table. The problem is that I'd like to find the mean of every combination of rows taken k at a time --- so for all the rows, I'd like to find (say) the mean of every combination of 10 rows. So:
id | count
----|------
1 | 5
2 | 3
3 | 6
...
30 | 16
should give me
mean of ids 1..10; ids 1, 3..11; ids 1, 4..12, and so so. I know this will yield a lot of rows.
There are SO answers for finding combinations from arrays. I could do this programmatically by taking 30 ids 10 at a time and then SELECTing them. Is there a way to do this with PARTITION BY, TABLESAMPLE, or another function (something like python's itertools.combinations())? (TABLESAMPLE by itself won't guarantee which subset of rows I am selecting as far as I can tell.)
The method described in the cited answer is static. A more convenient solution may be to use recursion.
Example data:
drop table if exists my_table;
create table my_table(id int primary key, number int);
insert into my_table values
(1, 5),
(2, 3),
(3, 6),
(4, 9),
(5, 2);
Query which finds 2 element subsets in 5 element set (k-combination with k = 2):
with recursive recur as (
select
id,
array[id] as combination,
array[number] as numbers,
number as sum
from my_table
union all
select
t.id,
combination || t.id,
numbers || t.number,
sum+ number
from my_table t
join recur r on r.id < t.id
and cardinality(combination) < 2 -- param k
)
select combination, numbers, sum/2.0 as average -- param k
from recur
where cardinality(combination) = 2 -- param k
combination | numbers | average
-------------+---------+--------------------
{1,2} | {5,3} | 4.0000000000000000
{1,3} | {5,6} | 5.5000000000000000
{1,4} | {5,9} | 7.0000000000000000
{1,5} | {5,2} | 3.5000000000000000
{2,3} | {3,6} | 4.5000000000000000
{2,4} | {3,9} | 6.0000000000000000
{2,5} | {3,2} | 2.5000000000000000
{3,4} | {6,9} | 7.5000000000000000
{3,5} | {6,2} | 4.0000000000000000
{4,5} | {9,2} | 5.5000000000000000
(10 rows)
The same query for k = 3 gives:
combination | numbers | average
-------------+---------+--------------------
{1,2,3} | {5,3,6} | 4.6666666666666667
{1,2,4} | {5,3,9} | 5.6666666666666667
{1,2,5} | {5,3,2} | 3.3333333333333333
{1,3,4} | {5,6,9} | 6.6666666666666667
{1,3,5} | {5,6,2} | 4.3333333333333333
{1,4,5} | {5,9,2} | 5.3333333333333333
{2,3,4} | {3,6,9} | 6.0000000000000000
{2,3,5} | {3,6,2} | 3.6666666666666667
{2,4,5} | {3,9,2} | 4.6666666666666667
{3,4,5} | {6,9,2} | 5.6666666666666667
(10 rows)
Of course, you can remove numbers from the query if you do not need them.

How to order rows with linked parts in PostgreSQL

I have a table A with columns: id, title, condition
And i have another table B with information about position for some rows from table A. Table B have columns id, next_id, prev_id
How to sort rows from A based on information from table B?
For example,
Table A
id| title
---+-----
1 | title1
2 | title2
3 | title3
4 | title4
5 | title5
Table B
id| next_id | prev_id
---+-----
2 | 1 | null
5 | 4 | 3
I want to get this result:
id| title
---+-----
2 | title2
1 | title1
3 | title3
5 | title5
4 | title4
And after apply this sort, i want to sort by condition column yet.
I've already spent a lot of time looking for a solution, and hope for your help.
You have to add weights to your data, so you can order accordingly. This example uses next_id, not sure if you need to use prev_id, you don't explain the use of it.
Anyway, here's a code example:
-- Temporal Data for the test:
CREATE TEMP TABLE table_a(id integer,tittle text);
CREATE TEMP TABLE table_b(id integer,next_id integer, prev_id integer);
INSERT INTO table_a VALUES
(1,'title1'),
(2,'title2'),
(3,'title3'),
(4,'title4'),
(5,'title5');
INSERT INTO table_b VALUES
(2,1,null),
(5,4,3);
-- QUERY:
SELECT
id,tittle,
CASE -- Adding weight
WHEN next_id IS NULL THEN (id + 0.1)
ELSE next_id
END AS orden
FROM -- Joining tables
(SELECT ta.*,tb.next_id
FROM table_a ta
LEFT JOIN table_b tb
ON ta.id=tb.id)join_a_b
ORDER BY orden
And here's the result:
id | tittle | orden
--------------------------
2 | title2 | 1
1 | title1 | 1.1
3 | title3 | 3.1
5 | title5 | 4
4 | title4 | 4.1

How to traverse a hierarchical tree-structure structure backwards using recursive queries

I'm using PostgreSQL 9.1 to query hierarchical tree-structured data, consisting of edges (or elements) with connections to nodes. The data are actually for stream networks, but I've abstracted the problem to simple data types. Consider the example tree table. Each edge has length and area attributes, which are used to determine some useful metrics from the network.
CREATE TEMP TABLE tree (
edge text PRIMARY KEY,
from_node integer UNIQUE NOT NULL, -- can also act as PK
to_node integer REFERENCES tree (from_node),
mode character varying(5), -- redundant, but illustrative
length numeric NOT NULL,
area numeric NOT NULL,
fwd_path text[], -- optional ordered sequence, useful for debugging
fwd_search_depth integer,
fwd_length numeric,
rev_path text[], -- optional unordered set, useful for debugging
rev_search_depth integer,
rev_length numeric,
rev_area numeric
);
CREATE INDEX ON tree (to_node);
INSERT INTO tree(edge, from_node, to_node, mode, length, area) VALUES
('A', 1, 4, 'start', 1.1, 0.9),
('B', 2, 4, 'start', 1.2, 1.3),
('C', 3, 5, 'start', 1.8, 2.4),
('D', 4, 5, NULL, 1.2, 1.3),
('E', 5, NULL, 'end', 1.1, 0.9);
Which can be illustrated below, where the edges represented by A-E are connected with nodes 1-5. The NULL to_node (Ø) represents the end node. The from_node is always unique, so it can act as PK. If this network flows like a drainage basin, it would be from top to bottom, where the starting tributary edges are A, B, C and the ending outflow edge is E.
The documentation for WITH provide a nice example of how to use search graphs in recursive queries. So, to get the "forwards" information, the query starts at the end, and works backwards:
WITH RECURSIVE search_graph AS (
-- Begin at ending nodes
SELECT E.from_node, 1 AS search_depth, E.length
, ARRAY[E.edge] AS path -- optional
FROM tree E WHERE E.to_node IS NULL
UNION ALL
-- Accumulate each edge, working backwards (upstream)
SELECT o.from_node, sg.search_depth + 1, sg.length + o.length
, o.edge|| sg.path -- optional
FROM tree o, search_graph sg
WHERE o.to_node = sg.from_node
)
UPDATE tree SET
fwd_path = sg.path,
fwd_search_depth = sg.search_depth,
fwd_length = sg.length
FROM search_graph AS sg WHERE sg.from_node = tree.from_node;
SELECT edge, from_node, to_node, fwd_path, fwd_search_depth, fwd_length
FROM tree ORDER BY edge;
edge | from_node | to_node | fwd_path | fwd_search_depth | fwd_length
------+-----------+---------+----------+------------------+------------
A | 1 | 4 | {A,D,E} | 3 | 3.4
B | 2 | 4 | {B,D,E} | 3 | 3.5
C | 3 | 5 | {C,E} | 2 | 2.9
D | 4 | 5 | {D,E} | 2 | 2.3
E | 5 | | {E} | 1 | 1.1
The above makes sense, and scales well for large networks. For example, I can see edge B is 3 edges from the end, and the forward path is {B,D,E} with a total length of 3.5 from the tip to the end.
However, I cannot figure out a good way to build a reverse query. That is, from each edge, what are the accumulated "upstream" edges, lengths and areas. Using WITH RECURSIVE, the best I have is:
WITH RECURSIVE search_graph AS (
-- Begin at starting nodes
SELECT S.from_node, S.to_node, 1 AS search_depth, S.length, S.area
, ARRAY[S.edge] AS path -- optional
FROM tree S WHERE from_node IN (
-- Starting nodes have a from_node without any to_node
SELECT from_node FROM tree EXCEPT SELECT to_node FROM tree)
UNION ALL
-- Accumulate edges, working forwards
SELECT c.from_node, c.to_node, sg.search_depth + 1, sg.length + c.length, sg.area + c.area
, c.edge || sg.path -- optional
FROM tree c, search_graph sg
WHERE c.from_node = sg.to_node
)
UPDATE tree SET
rev_path = sg.path,
rev_search_depth = sg.search_depth,
rev_length = sg.length,
rev_area = sg.area
FROM search_graph AS sg WHERE sg.from_node = tree.from_node;
SELECT edge, from_node, to_node, rev_path, rev_search_depth, rev_length, rev_area
FROM tree ORDER BY edge;
edge | from_node | to_node | rev_path | rev_search_depth | rev_length | rev_area
------+-----------+---------+----------+------------------+------------+----------
A | 1 | 4 | {A} | 1 | 1.1 | 0.9
B | 2 | 4 | {B} | 1 | 1.2 | 1.3
C | 3 | 5 | {C} | 1 | 1.8 | 2.4
D | 4 | 5 | {D,A} | 2 | 2.3 | 2.2
E | 5 | | {E,C} | 2 | 2.9 | 3.3
I would like to build aggregates into the second term of the recursive query, since each downstream edge connects to 1 or many upstream edges, but aggregates are not allowed with recursive queries. Also, I'm aware that the join is sloppy, since the with recursive result has multiple join conditions for edge.
The expected result for the reverse / backwards query is:
edge | from_node | to_node | rev_path | rev_search_depth | rev_length | rev_area
------+-----------+---------+-------------+------------------+------------+----------
A | 1 | 4 | {A} | 1 | 1.1 | 0.9
B | 2 | 4 | {B} | 1 | 1.2 | 1.3
C | 3 | 5 | {C} | 1 | 1.8 | 2.4
D | 4 | 5 | {A,B,D} | 3 | 3.5 | 3.5
E | 5 | | {A,B,C,D,E} | 5 | 6.4 | 6.8
How can I write this update query?
Note that I'm ultimately more concerned about accumulating accurate length and area totals, and that the path attributes are for debugging. In my real-world case, forwards paths are up to a couple hundred, and I expect reverse paths in the tens of thousands for large and complex catchments.
UPDATE 2:
I rewrote the original recursive query so that all accumulation/aggregation is done outside the recursive part. It should perform better than the previous version of this answer.
This is very much alike the answer from #a_horse_with_no_name for a similar question.
WITH
RECURSIVE search_graph(edge, from_node, to_node, length, area, start_node) AS
(
SELECT edge, from_node, to_node, length, area, from_node AS "start_node"
FROM tree
UNION ALL
SELECT o.edge, o.from_node, o.to_node, o.length, o.area, p.start_node
FROM tree o
JOIN search_graph p ON p.from_node = o.to_node
)
SELECT array_agg(edge) AS "edges"
-- ,array_agg(from_node) AS "nodes"
,count(edge) AS "edge_count"
,sum(length) AS "length_sum"
,sum(area) AS "area_sum"
FROM search_graph
GROUP BY start_node
ORDER BY start_node
;
Results are as expected:
start_node | edges | edge_count | length_sum | area_sum
------------+-------------+------------+------------+------------
1 | {A} | 1 | 1.1 | 0.9
2 | {B} | 1 | 1.2 | 1.3
3 | {C} | 1 | 1.8 | 2.4
4 | {D,B,A} | 3 | 3.5 | 3.5
5 | {E,D,C,B,A} | 5 | 6.4 | 6.8

Find Parent Recursively using Query

I am using postgresql. I have the table as like below
parent_id child_id
----------------------
101 102
103 104
104 105
105 106
I want to write a sql query which will give the final parent of input.
i.e suppose i pass 106 as input then , its output will be 103.
(106 --> 105 --> 104 --> 103)
Here's a complete example. First the DDL:
test=> CREATE TABLE node (
test(> id SERIAL,
test(> label TEXT NOT NULL, -- name of the node
test(> parent_id INT,
test(> PRIMARY KEY(id)
test(> );
NOTICE: CREATE TABLE will create implicit sequence "node_id_seq" for serial column "node.id"
NOTICE: CREATE TABLE / PRIMARY KEY will create implicit index "node_pkey" for table "node"
CREATE TABLE
...and some data...
test=> INSERT INTO node (label, parent_id) VALUES ('n1',NULL),('n2',1),('n3',2),('n4',3);
INSERT 0 4
test=> INSERT INTO node (label) VALUES ('garbage1'),('garbage2'), ('garbage3');
INSERT 0 3
test=> INSERT INTO node (label,parent_id) VALUES ('garbage4',6);
INSERT 0 1
test=> SELECT * FROM node;
id | label | parent_id
----+----------+-----------
1 | n1 |
2 | n2 | 1
3 | n3 | 2
4 | n4 | 3
5 | garbage1 |
6 | garbage2 |
7 | garbage3 |
8 | garbage4 | 6
(8 rows)
This performs a recursive query on every id in node:
test=> WITH RECURSIVE nodes_cte(id, label, parent_id, depth, path) AS (
SELECT tn.id, tn.label, tn.parent_id, 1::INT AS depth, tn.id::TEXT AS path
FROM node AS tn
WHERE tn.parent_id IS NULL
UNION ALL
SELECT c.id, c.label, c.parent_id, p.depth + 1 AS depth,
(p.path || '->' || c.id::TEXT)
FROM nodes_cte AS p, node AS c
WHERE c.parent_id = p.id
)
SELECT * FROM nodes_cte AS n ORDER BY n.id ASC;
id | label | parent_id | depth | path
----+----------+-----------+-------+------------
1 | n1 | | 1 | 1
2 | n2 | 1 | 2 | 1->2
3 | n3 | 2 | 3 | 1->2->3
4 | n4 | 3 | 4 | 1->2->3->4
5 | garbage1 | | 1 | 5
6 | garbage2 | | 1 | 6
7 | garbage3 | | 1 | 7
8 | garbage4 | 6 | 2 | 6->8
(8 rows)
This gets all of the descendents WHERE node.id = 1:
test=> WITH RECURSIVE nodes_cte(id, label, parent_id, depth, path) AS (
SELECT tn.id, tn.label, tn.parent_id, 1::INT AS depth, tn.id::TEXT AS path FROM node AS tn WHERE tn.id = 1
UNION ALL
SELECT c.id, c.label, c.parent_id, p.depth + 1 AS depth, (p.path || '->' || c.id::TEXT) FROM nodes_cte AS p, node AS c WHERE c.parent_id = p.id
)
SELECT * FROM nodes_cte AS n;
id | label | parent_id | depth | path
----+-------+-----------+-------+------------
1 | n1 | | 1 | 1
2 | n2 | 1 | 2 | 1->2
3 | n3 | 2 | 3 | 1->2->3
4 | n4 | 3 | 4 | 1->2->3->4
(4 rows)
The following will get the path of the node with id 4:
test=> WITH RECURSIVE nodes_cte(id, label, parent_id, depth, path) AS (
SELECT tn.id, tn.label, tn.parent_id, 1::INT AS depth, tn.id::TEXT AS path
FROM node AS tn
WHERE tn.parent_id IS NULL
UNION ALL
SELECT c.id, c.label, c.parent_id, p.depth + 1 AS depth,
(p.path || '->' || c.id::TEXT)
FROM nodes_cte AS p, node AS c
WHERE c.parent_id = p.id
)
SELECT * FROM nodes_cte AS n WHERE n.id = 4;
id | label | parent_id | depth | path
----+-------+-----------+-------+------------
4 | n4 | 3 | 4 | 1->2->3->4
(1 row)
And let's assume you want to limit your search to descendants with a depth less than three (note that depth hasn't been incremented yet):
test=> WITH RECURSIVE nodes_cte(id, label, parent_id, depth, path) AS (
SELECT tn.id, tn.label, tn.parent_id, 1::INT AS depth, tn.id::TEXT AS path
FROM node AS tn WHERE tn.id = 1
UNION ALL
SELECT c.id, c.label, c.parent_id, p.depth + 1 AS depth,
(p.path || '->' || c.id::TEXT)
FROM nodes_cte AS p, node AS c
WHERE c.parent_id = p.id AND p.depth < 2
)
SELECT * FROM nodes_cte AS n;
id | label | parent_id | depth | path
----+-------+-----------+-------+------
1 | n1 | | 1 | 1
2 | n2 | 1 | 2 | 1->2
(2 rows)
I'd recommend using an ARRAY data type instead of a string for demonstrating the "path", but the arrow is more illustrative of the parent<=>child relationship.
Use WITH RECURSIVE to create a Common Table Expression (CTE). For the non-recursive term, get the rows in which the child is immediately below the parent:
SELECT
c.child_id,
c.parent_id
FROM
mytable c
LEFT JOIN
mytable p ON c.parent_id = p.child_id
WHERE
p.child_id IS NULL
child_id | parent_id
----------+-----------
102 | 101
104 | 103
For the recursive term, you want the children of these children.
WITH RECURSIVE tree(child, root) AS (
SELECT
c.child_id,
c.parent_id
FROM
mytable c
LEFT JOIN
mytable p ON c.parent_id = p.child_id
WHERE
p.child_id IS NULL
UNION
SELECT
child_id,
root
FROM
tree
INNER JOIN
mytable on tree.child = mytable.parent_id
)
SELECT * FROM tree;
child | root
-------+------
102 | 101
104 | 103
105 | 103
106 | 103
You can filter the children when querying the CTE:
WITH RECURSIVE tree(child, root) AS (...) SELECT root FROM tree WHERE child = 106;
root
------
103

Equivalent to unpivot() in PostgreSQL

Is there a unpivot equivalent function in PostgreSQL?
Create an example table:
CREATE TEMP TABLE foo (id int, a text, b text, c text);
INSERT INTO foo VALUES (1, 'ant', 'cat', 'chimp'), (2, 'grape', 'mint', 'basil');
You can 'unpivot' or 'uncrosstab' using UNION ALL:
SELECT id,
'a' AS colname,
a AS thing
FROM foo
UNION ALL
SELECT id,
'b' AS colname,
b AS thing
FROM foo
UNION ALL
SELECT id,
'c' AS colname,
c AS thing
FROM foo
ORDER BY id;
This runs 3 different subqueries on foo, one for each column we want to unpivot, and returns, in one table, every record from each of the subqueries.
But that will scan the table N times, where N is the number of columns you want to unpivot. This is inefficient, and a big problem when, for example, you're working with a very large table that takes a long time to scan.
Instead, use:
SELECT id,
unnest(array['a', 'b', 'c']) AS colname,
unnest(array[a, b, c]) AS thing
FROM foo
ORDER BY id;
This is easier to write, and it will only scan the table once.
array[a, b, c] returns an array object, with the values of a, b, and c as it's elements.
unnest(array[a, b, c]) breaks the results into one row for each of the array's elements.
You could use VALUES() and JOIN LATERAL to unpivot the columns.
Sample data:
CREATE TABLE test(id int, a INT, b INT, c INT);
INSERT INTO test(id,a,b,c) VALUES (1,11,12,13),(2,21,22,23),(3,31,32,33);
Query:
SELECT t.id, s.col_name, s.col_value
FROM test t
JOIN LATERAL(VALUES('a',t.a),('b',t.b),('c',t.c)) s(col_name, col_value) ON TRUE;
DBFiddle Demo
Using this approach it is possible to unpivot multiple groups of columns at once.
EDIT
Using Zack's suggestion:
SELECT t.id, col_name, col_value
FROM test t
CROSS JOIN LATERAL (VALUES('a', t.a),('b', t.b),('c',t.c)) s(col_name, col_value);
<=>
SELECT t.id, col_name, col_value
FROM test t
,LATERAL (VALUES('a', t.a),('b', t.b),('c',t.c)) s(col_name, col_value);
db<>fiddle demo
Great article by Thomas Kellerer found here
Unpivot with Postgres
Sometimes it’s necessary to normalize de-normalized tables - the opposite of a “crosstab” or “pivot” operation. Postgres does not support an UNPIVOT operator like Oracle or SQL Server, but simulating it, is very simple.
Take the following table that stores aggregated values per quarter:
create table customer_turnover
(
customer_id integer,
q1 integer,
q2 integer,
q3 integer,
q4 integer
);
And the following sample data:
customer_id | q1 | q2 | q3 | q4
------------+-----+-----+-----+----
1 | 100 | 210 | 203 | 304
2 | 150 | 118 | 422 | 257
3 | 220 | 311 | 271 | 269
But we want the quarters to be rows (as they should be in a normalized data model).
In Oracle or SQL Server this could be achieved with the UNPIVOT operator, but that is not available in Postgres. However Postgres’ ability to use the VALUES clause like a table makes this actually quite easy:
select c.customer_id, t.*
from customer_turnover c
cross join lateral (
values
(c.q1, 'Q1'),
(c.q2, 'Q2'),
(c.q3, 'Q3'),
(c.q4, 'Q4')
) as t(turnover, quarter)
order by customer_id, quarter;
will return the following result:
customer_id | turnover | quarter
------------+----------+--------
1 | 100 | Q1
1 | 210 | Q2
1 | 203 | Q3
1 | 304 | Q4
2 | 150 | Q1
2 | 118 | Q2
2 | 422 | Q3
2 | 257 | Q4
3 | 220 | Q1
3 | 311 | Q2
3 | 271 | Q3
3 | 269 | Q4
The equivalent query with the standard UNPIVOT operator would be:
select customer_id, turnover, quarter
from customer_turnover c
UNPIVOT (turnover for quarter in (q1 as 'Q1',
q2 as 'Q2',
q3 as 'Q3',
q4 as 'Q4'))
order by customer_id, quarter;
FYI for those of us looking for how to unpivot in RedShift.
The long form solution given by Stew appears to be the only way to accomplish this.
For those who cannot see it there, here is the text pasted below:
We do not have built-in functions that will do pivot or unpivot. However,
you can always write SQL to do that.
create table sales (regionid integer, q1 integer, q2 integer, q3 integer, q4 integer);
insert into sales values (1,10,12,14,16), (2,20,22,24,26);
select * from sales order by regionid;
regionid | q1 | q2 | q3 | q4
----------+----+----+----+----
1 | 10 | 12 | 14 | 16
2 | 20 | 22 | 24 | 26
(2 rows)
pivot query
create table sales_pivoted (regionid, quarter, sales)
as
select regionid, 'Q1', q1 from sales
UNION ALL
select regionid, 'Q2', q2 from sales
UNION ALL
select regionid, 'Q3', q3 from sales
UNION ALL
select regionid, 'Q4', q4 from sales
;
select * from sales_pivoted order by regionid, quarter;
regionid | quarter | sales
----------+---------+-------
1 | Q1 | 10
1 | Q2 | 12
1 | Q3 | 14
1 | Q4 | 16
2 | Q1 | 20
2 | Q2 | 22
2 | Q3 | 24
2 | Q4 | 26
(8 rows)
unpivot query
select regionid, sum(Q1) as Q1, sum(Q2) as Q2, sum(Q3) as Q3, sum(Q4) as Q4
from
(select regionid,
case quarter when 'Q1' then sales else 0 end as Q1,
case quarter when 'Q2' then sales else 0 end as Q2,
case quarter when 'Q3' then sales else 0 end as Q3,
case quarter when 'Q4' then sales else 0 end as Q4
from sales_pivoted)
group by regionid
order by regionid;
regionid | q1 | q2 | q3 | q4
----------+----+----+----+----
1 | 10 | 12 | 14 | 16
2 | 20 | 22 | 24 | 26
(2 rows)
Hope this helps, Neil
Pulling slightly modified content from the link in the comment from #a_horse_with_no_name into an answer because it works:
Installing Hstore
If you don't have hstore installed and are running PostgreSQL 9.1+, you can use the handy
CREATE EXTENSION hstore;
For lower versions, look for the hstore.sql file in share/contrib and run in your database.
Assuming that your source (e.g., wide data) table has one 'id' column, named id_field, and any number of 'value' columns, all of the same type, the following will create an unpivoted view of that table.
CREATE VIEW vw_unpivot AS
SELECT id_field, (h).key AS column_name, (h).value AS column_value
FROM (
SELECT id_field, each(hstore(foo) - 'id_field'::text) AS h
FROM zcta5 as foo
) AS unpiv ;
This works with any number of 'value' columns. All of the resulting values will be text, unless you cast, e.g., (h).value::numeric.
Just use JSON:
with data (id, name) as (
values (1, 'a'), (2, 'b')
)
select t.*
from data, lateral jsonb_each_text(to_jsonb(data)) with ordinality as t
order by data.id, t.ordinality;
This yields
|key |value|ordinality|
|----|-----|----------|
|id |1 |1 |
|name|a |2 |
|id |2 |1 |
|name|b |2 |
dbfiddle
I wrote a horrible unpivot function for PostgreSQL. It's rather slow but it at least returns results like you'd expect an unpivot operation to.
https://cgsrv1.arrc.csiro.au/blog/2010/05/14/unpivotuncrosstab-in-postgresql/
Hopefully you can find it useful..
Depending on what you want to do... something like this can be helpful.
with wide_table as (
select 1 a, 2 b, 3 c
union all
select 4 a, 5 b, 6 c
)
select unnest(array[a,b,c]) from wide_table
You can use FROM UNNEST() array handling to UnPivot a dataset, tandem with a correlated subquery (works w/ PG 9.4).
FROM UNNEST() is more powerful & flexible than the typical method of using FROM (VALUES .... ) to unpivot datasets. This is b/c FROM UNNEST() is variadic (with n-ary arity). By using a correlated subquery the need for the lateral ORDINAL clause is eliminated, & Postgres keeps the resulting parallel columnar sets in the proper ordinal sequence.
This is, BTW, FAST -- in practical use spawning 8 million rows in < 15 seconds on a 24-core system.
WITH _students AS ( /** CTE **/
SELECT * FROM
( SELECT 'jane'::TEXT ,'doe'::TEXT , 1::INT
UNION
SELECT 'john'::TEXT ,'doe'::TEXT , 2::INT
UNION
SELECT 'jerry'::TEXT ,'roe'::TEXT , 3::INT
UNION
SELECT 'jodi'::TEXT ,'roe'::TEXT , 4::INT
) s ( fn, ln, id )
) /** end WITH **/
SELECT s.id
, ax.fanm -- field labels, now expanded to two rows
, ax.anm -- field data, now expanded to two rows
, ax.someval -- manually incl. data
, ax.rankednum -- manually assigned ranks
,ax.genser -- auto-generate ranks
FROM _students s
,UNNEST /** MULTI-UNNEST() BLOCK **/
(
( SELECT ARRAY[ fn, ln ]::text[] AS anm -- expanded into two rows by outer UNNEST()
/** CORRELATED SUBQUERY **/
FROM _students s2 WHERE s2.id = s.id -- outer relation
)
,( /** ordinal relationship preserved in variadic UNNEST() **/
SELECT ARRAY[ 'first name', 'last name' ]::text[] -- exp. into 2 rows
AS fanm
)
,( SELECT ARRAY[ 'z','x','y'] -- only 3 rows gen'd, but ordinal rela. kept
AS someval
)
,( SELECT ARRAY[ 1,2,3,4,5 ] -- 5 rows gen'd, ordinal rela. kept.
AS rankednum
)
,( SELECT ARRAY( /** you may go wild ... **/
SELECT generate_series(1, 15, 3 )
AS genser
)
)
) ax ( anm, fanm, someval, rankednum , genser )
;
RESULT SET:
+--------+----------------+-----------+----------+---------+-------
| id | fanm | anm | someval |rankednum| [ etc. ]
+--------+----------------+-----------+----------+---------+-------
| 2 | first name | john | z | 1 | .
| 2 | last name | doe | y | 2 | .
| 2 | [null] | [null] | x | 3 | .
| 2 | [null] | [null] | [null] | 4 | .
| 2 | [null] | [null] | [null] | 5 | .
| 1 | first name | jane | z | 1 | .
| 1 | last name | doe | y | 2 | .
| 1 | | | x | 3 | .
| 1 | | | | 4 | .
| 1 | | | | 5 | .
| 4 | first name | jodi | z | 1 | .
| 4 | last name | roe | y | 2 | .
| 4 | | | x | 3 | .
| 4 | | | | 4 | .
| 4 | | | | 5 | .
| 3 | first name | jerry | z | 1 | .
| 3 | last name | roe | y | 2 | .
| 3 | | | x | 3 | .
| 3 | | | | 4 | .
| 3 | | | | 5 | .
+--------+----------------+-----------+----------+---------+ ----
Here's a way that combines the hstore and CROSS JOIN approaches from other answers.
It's a modified version of my answer to a similar question, which is itself based on the method at https://blog.sql-workbench.eu/post/dynamic-unpivot/ and another answer to that question.
-- Example wide data with a column for each year...
WITH example_wide_data("id", "2001", "2002", "2003", "2004") AS (
VALUES
(1, 4, 5, 6, 7),
(2, 8, 9, 10, 11)
)
-- that is tided to have "year" and "value" columns
SELECT
id,
r.key AS year,
r.value AS value
FROM
example_wide_data w
CROSS JOIN
each(hstore(w.*)) AS r(key, value)
WHERE
-- This chooses columns that look like years
-- In other cases you might need a different condition
r.key ~ '^[0-9]{4}$';
It has a few benefits over other solutions:
By using hstore and not jsonb, it hopefully minimises issues with type conversions (although hstore does convert everything to text)
The columns don't need to be hard coded or known in advance. Here, columns are chosen by a regex on the name, but you could use any SQL logic based on the name, or even the value.
It doesn't require PL/pgSQL - it's all SQL