Code was working with one callback function, but when i added a second callback(change title color feature) everything stopped working and i was given a blank canvas. I would like to be able to see the bar chart, with live adjutable size graph(first callback) and manually adjusting title color(second title) PLEASE HELP, THANK YOU IN ADVANCE! :>
from dash import Dash, dcc, html, Input, Output
import plotly.express as px
from jupyter_dash import JupyterDash
import dash_daq as daq
app = JupyterDash(__name__)
colors = {
'background': '#111111',
'text': '#7FDBFF'
}
picker_style = {'float': 'left', 'margin': 'auto'}
app.layout = html.Div([
html.H1(
children='Hello Dash',
style={
'textAlign': 'center',
'color': colors['text']
}
),
html.P('Live adjustable graph-size(using Dash python)', style={'textAlign': 'center','color': colors['text']}),
html.P('Please manually Change figure width of your choice(+-200px):', style={'textAlign': 'center','color': colors['text']}),
# html.P("Change figure width:", style={'color': colors['text']}),
# dcc.Slider(id='slider', min=500, max=1900, step=200, value=1700,
# marks={x: str(x) for x in [500, 700,900,1100,1300,1500,1700, 1900]},updatemode='drag',tooltip={"placement": "bottom", "always_visible": True}),
dcc.Slider(id='slider', min=500, max=1200, step=100, value=1100,
marks={x: str(x) for x in [500,600,700,800,900,1000,1100,1200]},updatemode='drag',tooltip={"placement": "bottom", "always_visible": True}),
dcc.Graph(id="graph"),
daq.ColorPicker(
id='font', label='Font Color', size=150,
style=picker_style, value=dict(hex='#119DFF')),
daq.ColorPicker(
id='title', label='Title Color', size=150,
style=picker_style, value=dict(hex='#F71016')),
])
#app.callback(
Output("graph", "figure"),
Input('slider', 'value'))
# def display_value(width):
# return 'Width Value: {}'.format(width)
def resize_figure(width):
fig = go.Figure(data=[
go.Bar(name='Monthly Concession Passes',
x=concession["cardholders"],
y=concession["train_price"],
text = concession["train_price"]),
go.Bar(name='Average Fees using Card',
x=concession["cardholders"],
y = concession["MRT Fees"],
text = round(concession["Average Card Fees"],1)),
go.Bar(name='Single Trip Fees(cash)',
x=concession["cardholders"],
y=concession["Single Trip Fees(cash)"],
text = round(concession["Single Trip Fees(cash)"],1))
])
fig.update_layout(
barmode='group',
template="plotly_dark",
paper_bgcolor=colors['background'],
font_color=colors['text'],
title_text=
'Average Monthly Expenditure comparing Concession Passes, Card and Cash for buses',
title_x=0.5,
yaxis={
'title': 'Fees ($)',
# 'rangemode': 'tozero',
'ticks': 'outside'
})
fig.update_layout(width=int(width))
return fig
# #app.callback(
# Output("graph", 'figure'),
# Input("font", 'value'),
# Input("title", 'value')
# )
# def update_bar_chart(font_color, title_color):
# fig = go.Figure(data=[
# go.Bar(name='Monthly Concession Passes',
# x=concession["cardholders"],
# y=concession["train_price"],
# text = concession["train_price"]),
# go.Bar(name='Average Fees using Card',
# x=concession["cardholders"],
# y = concession["MRT Fees"],
# text = round(concession["Average Card Fees"],1)),
# go.Bar(name='Single Trip Fees(cash)',
# x=concession["cardholders"],
# y=concession["Single Trip Fees(cash)"],
# text = round(concession["Single Trip Fees(cash)"],1))
# ])
# fig.update_layout(
# font_color=font_color['hex'],
# title_font_color=title_color['hex'])
# return fig
#app.run_server(mode="inline")
this is data in dictionary:
{'cardholders': {0: 'Primary Student',
1: 'Secondary Student',
2: 'Polytechnic Student',
3: 'University Student',
4: 'Full-time National Serviceman',
5: 'Senior Citizen',
6: 'Adult (Monthly Travel Pass)'},
'bus_price': {0: 24.0, 1: 29.0, 2: 29.0, 3: 55.5, 4: 55.5, 5: 64.0, 6: 128.0},
'train_price': {0: 21.0,
1: 26.5,
2: 26.5,
3: 48.0,
4: 48.0,
5: 64.0,
6: 128.0},
'hybrid_price': {0: 43.5,
1: 54.0,
2: 54.0,
3: 90.5,
4: 90.5,
5: 64.0,
6: 128.0},
'Average Card Fees': {0: 8.149223099487395,
1: 8.149223099487395,
2: 8.149223099487395,
3: 8.149223099487395,
4: 20.208239081660064,
5: 11.538449007368001,
6: 20.208239081660064},
'Average Cash Fees': {0: 17.756768358801253,
1: 17.756768358801253,
2: 17.756768358801253,
3: 17.756768358801253,
4: 30.431152919426268,
5: 22.514797400960248,
6: 30.431152919426268},
'Single Trip Fees(cash)': {0: 69.0,
1: 69.0,
2: 69.0,
3: 69.0,
4: 69.0,
5: 69.0,
6: 69.0},
'MRT Fees': {0: 12.0, 1: 12.0, 2: 12.0, 3: 12.0, 4: 40.5, 5: 20.7, 6: 40.5}}
The main issue is that you cannot have duplicate callback outputs – this isn't supported in Dash (probably because it could lead to a race condition if you have multiple callbacks trying to modify the same figure and they execute at the same time). I understand why you want to break up your callbacks, but in this case, we can actually condense down your code quite a bit anyway, and make your callback more focused.
First, I would define the figure outside of the callback and use dcc.Graph(id="graph", figure=fig) so that the figure is present when the app starts running – this way we don't need to redefine the figure in the callback every time it's executed – we'll design the callback so it only modifies only the width, font color, and title color of the figure's layout.
Then we can combine your two callbacks into one by collecting all of the inputs from both of your original callbacks, and also pass the figure as an input.
Note that when a figure is passed to the callback as an input, it will be in the form of a dictionary, so we'll want to convert the fig argument from the callback to a go.Figure object using something like plotly_fig = go.Figure(fig_dict). Then you can modify the layout of plotly_fig based on the other inputs using plotly_fig.update_layout(...).
Here is a working example:
import pandas as pd
import plotly.graph_objects as go
import plotly.express as px
from dash import Dash, dcc, html, Input, Output
from jupyter_dash import JupyterDash
import dash_daq as daq
concession = pd.DataFrame({'cardholders': {0: 'Primary Student',
1: 'Secondary Student',
2: 'Polytechnic Student',
3: 'University Student',
4: 'Full-time National Serviceman',
5: 'Senior Citizen',
6: 'Adult (Monthly Travel Pass)'},
'bus_price': {0: 24.0, 1: 29.0, 2: 29.0, 3: 55.5, 4: 55.5, 5: 64.0, 6: 128.0},
'train_price': {0: 21.0,
1: 26.5,
2: 26.5,
3: 48.0,
4: 48.0,
5: 64.0,
6: 128.0},
'hybrid_price': {0: 43.5,
1: 54.0,
2: 54.0,
3: 90.5,
4: 90.5,
5: 64.0,
6: 128.0},
'Average Card Fees': {0: 8.149223099487395,
1: 8.149223099487395,
2: 8.149223099487395,
3: 8.149223099487395,
4: 20.208239081660064,
5: 11.538449007368001,
6: 20.208239081660064},
'Average Cash Fees': {0: 17.756768358801253,
1: 17.756768358801253,
2: 17.756768358801253,
3: 17.756768358801253,
4: 30.431152919426268,
5: 22.514797400960248,
6: 30.431152919426268},
'Single Trip Fees(cash)': {0: 69.0,
1: 69.0,
2: 69.0,
3: 69.0,
4: 69.0,
5: 69.0,
6: 69.0},
'MRT Fees': {0: 12.0, 1: 12.0, 2: 12.0, 3: 12.0, 4: 40.5, 5: 20.7, 6: 40.5}})
app = JupyterDash(__name__)
colors = {
'background': '#111111',
'text': '#7FDBFF'
}
picker_style = {'float': 'left', 'margin': 'auto'}
## define the figure
fig = go.Figure(data=[
go.Bar(name='Monthly Concession Passes',
x=concession["cardholders"],
y=concession["train_price"],
text = concession["train_price"]),
go.Bar(name='Average Fees using Card',
x=concession["cardholders"],
y = concession["MRT Fees"],
text = round(concession["Average Card Fees"],1)),
go.Bar(name='Single Trip Fees(cash)',
x=concession["cardholders"],
y=concession["Single Trip Fees(cash)"],
text = round(concession["Single Trip Fees(cash)"],1))
])
fig.update_layout(
barmode='group',
template="plotly_dark",
paper_bgcolor=colors['background'],
font={
'color': colors['text']
},
title_text=
'Average Monthly Expenditure comparing Concession Passes, Card and Cash for buses',
width=1100,
title_x=0.5,
title={
'text': 'Fees ($)',
'font': {'color': '#F71016'}
},
yaxis={
# 'title': 'Fees ($)',
# 'rangemode': 'tozero',
'ticks': 'outside'
})
app.layout = html.Div([
html.H1(
children='Hello Dash',
style={
'textAlign': 'center',
'color': colors['text']
}
),
html.P('Live adjustable graph-size(using Dash python)', style={'textAlign': 'center','color': colors['text']}),
html.P('Please manually Change figure width of your choice(+-200px):', style={'textAlign': 'center','color': colors['text']}),
# html.P("Change figure width:", style={'color': colors['text']}),
# dcc.Slider(id='slider', min=500, max=1900, step=200, value=1700,
# marks={x: str(x) for x in [500, 700,900,1100,1300,1500,1700, 1900]},updatemode='drag',tooltip={"placement": "bottom", "always_visible": True}),
dcc.Slider(id='slider', min=500, max=1200, step=100, value=1100,
marks={x: str(x) for x in [500,600,700,800,900,1000,1100,1200]},updatemode='drag',tooltip={"placement": "bottom", "always_visible": True}),
dcc.Graph(id="graph", figure=fig),
daq.ColorPicker(
id='font', label='Font Color', size=150,
style=picker_style, value=dict(hex='#119DFF')),
daq.ColorPicker(
id='title', label='Title Color', size=150,
style=picker_style, value=dict(hex='#F71016')),
])
#app.callback(
Output("graph", "figure"),
[Input("graph", "figure"),
Input('slider', 'value'),
Input("font", 'value'),
Input("title", 'value')],
prevent_initial_call=True
)
def update_figure(fig_dict, width, font_color, title_color):
plotly_fig = go.Figure(fig_dict)
plotly_fig.update_layout(
width=int(width),
font_color=font_color['hex'],
title_font_color=title_color['hex']
)
return plotly_fig
## I ran this externally, but you can run this inline
app.run_server(mode="external", port=8050)
Goal
I need to add some aeronautical layers taken from FAA to the map. The layers are provided as GeoTIFF files.
Steps
Downloaded a GeoTiff file from FAA website.
Using QGis app clipped the legend from the file. Actually the issue occurs without this step as well.
Reprojected it to EPSG:3857 using GDAL command gdalwarp -q -t_srs EPSG:3857 -dstalpha -of vrt Albuquerque\ SEC\ 104-cut.tif /vsistdout/ | gdal_translate -co compress=lzw /vsistdin/ Albuquerque\ SEC\ 104-north-up-cut.tif. Otherwise I got Error creating Mapnik Datasource: Invalid raster: Invalid rotation value in geotransform array when uploading to Mapbox.
Created a Tileset by uploading GeoTIFFs to Mapbox.
Created a new style in the Mapbox Studio.
Added the tilesets as layers.
Mapbox Studio Result
The map is showing well in Mapbox Studio:
Android Result
However in Android app this style shows with some black borders of random width depending on zoom level and camera position.
Here is how it looks in android:
I tried it on Pixel 3a (Android 10), Nexus 5x (Android 8.1) and Android emulator (Android 10). I have good internet connection and gave it enough time so the tiles are loaded.
The source code where the map is embedded is official Demo app. I just replaced token and style URL:
mapView.getMapAsync(new OnMapReadyCallback() {
#Override
public void onMapReady(#NonNull MapboxMap mapboxMap) {
DefaultStyleActivity.this.mapboxMap = mapboxMap;
mapboxMap.setStyle("mapbox://styles/rustamg/ck8se724l23bh1io2b1hnbqls");
}
});
Here is GDALInfo for the GEOTiff I uploaded:
Driver: GTiff/GeoTIFF
Files: /Users/me/Desktop/Dev/Albuquerque SEC 104-north-up-cut.tif
Size is 16104, 11408
Coordinate System is:
PROJCS["WGS 84 / Pseudo-Mercator",
GEOGCS["WGS 84",
DATUM["WGS_1984",
SPHEROID["WGS 84",6378137,298.257223563,
AUTHORITY["EPSG","7030"]],
AUTHORITY["EPSG","6326"]],
PRIMEM["Greenwich",0,
AUTHORITY["EPSG","8901"]],
UNIT["degree",0.0174532925199433,
AUTHORITY["EPSG","9122"]],
AUTHORITY["EPSG","4326"]],
PROJECTION["Mercator_1SP"],
PARAMETER["central_meridian",0],
PARAMETER["scale_factor",1],
PARAMETER["false_easting",0],
PARAMETER["false_northing",0],
UNIT["metre",1,
AUTHORITY["EPSG","9001"]],
AXIS["X",EAST],
AXIS["Y",NORTH],
EXTENSION["PROJ4","+proj=merc +a=6378137 +b=6378137 +lat_ts=0.0 +lon_0=0.0 +x_0=0.0 +y_0=0 +k=1.0 +units=m +nadgrids=#null +wktext +no_defs"],
AUTHORITY["EPSG","3857"]]
Origin = (-12154316.342745549976826,4340308.343459489755332)
Pixel Size = (51.194510520863538,-51.194510520863538)
Metadata:
AREA_OR_POINT=Area
TIFFTAG_DATETIME=2019:09:03 09:02:22
TIFFTAG_RESOLUTIONUNIT=2 (pixels/inch)
TIFFTAG_SOFTWARE=Adobe Photoshop CC (Windows)
TIFFTAG_XRESOLUTION=300
TIFFTAG_YRESOLUTION=300
Image Structure Metadata:
COMPRESSION=LZW
INTERLEAVE=PIXEL
Corner Coordinates:
Upper Left (-12154316.343, 4340308.343) (109d11' 2.69"W, 36d17'16.43"N)
Lower Left (-12154316.343, 3756281.367) (109d11' 2.69"W, 31d56'47.16"N)
Upper Right (-11329879.945, 4340308.343) (101d46'40.96"W, 36d17'16.43"N)
Lower Right (-11329879.945, 3756281.367) (101d46'40.96"W, 31d56'47.16"N)
Center (-11742098.144, 4048294.855) (105d28'51.82"W, 34d 8'42.17"N)
Band 1 Block=16104x1 Type=Byte, ColorInterp=Palette
Mask Flags: PER_DATASET ALPHA
Color Table (RGB with 256 entries)
0: 255,255,255,255
1: 255,255,0,255
2: 255,0,255,255
3: 255,0,0,255
4: 0,255,255,255
5: 0,255,0,255
6: 0,0,255,255
7: 0,0,0,255
8: 252,252,254,255
9: 255,255,1,255
10: 252,236,170,255
11: 248,228,166,255
12: 228,200,154,255
13: 154,81,86,255
14: 120,103,105,255
15: 221,135,154,255
16: 166,87,106,255
17: 107,86,91,255
18: 172,104,124,255
19: 79,9,35,255
20: 141,59,88,255
21: 126,12,61,255
22: 229,107,161,255
23: 200,150,173,255
24: 234,178,204,255
25: 100,8,53,255
26: 200,81,137,255
27: 146,68,105,255
28: 136,38,88,255
29: 98,29,64,255
30: 190,113,151,255
31: 119,44,83,255
32: 214,182,199,255
33: 177,144,163,255
34: 116,13,75,255
35: 33,8,25,255
36: 143,116,141,255
37: 232,216,232,255
38: 248,232,248,255
39: 77,26,86,255
40: 75,69,104,255
41: 105,103,125,255
42: 40,36,105,255
43: 8,8,24,255
44: 232,232,248,255
45: 120,120,122,255
46: 8,14,85,255
47: 203,204,216,255
48: 60,62,80,255
49: 8,22,115,255
50: 86,88,104,255
51: 180,184,201,255
52: 8,54,179,255
53: 8,40,120,255
54: 28,56,120,255
55: 8,40,104,255
56: 143,152,171,255
57: 8,54,136,255
58: 37,47,65,255
59: 184,201,232,255
60: 25,72,152,255
61: 202,214,233,255
62: 31,56,95,255
63: 8,84,182,255
64: 8,72,158,255
65: 8,56,120,255
66: 9,42,86,255
67: 25,72,136,255
68: 37,88,152,255
69: 51,75,104,255
70: 11,100,202,255
71: 8,23,40,255
72: 27,72,120,255
73: 8,56,104,255
74: 44,88,133,255
75: 184,198,212,255
76: 80,84,88,255
77: 8,72,133,255
78: 22,104,178,255
79: 71,121,168,255
80: 91,134,173,255
81: 43,121,184,255
82: 80,113,140,255
83: 8,88,152,255
84: 24,88,136,255
85: 53,104,143,255
86: 8,88,136,255
87: 22,104,149,255
88: 114,144,162,255
89: 139,172,191,255
90: 104,124,134,255
91: 146,205,232,255
92: 136,197,216,255
93: 134,184,201,255
94: 153,200,216,255
95: 135,216,232,255
96: 85,105,109,255
97: 213,233,236,255
98: 152,195,200,255
99: 167,216,221,255
100: 181,232,237,255
101: 151,233,237,255
102: 8,24,24,255
103: 230,248,248,255
104: 182,183,183,255
105: 184,217,216,255
106: 120,136,134,255
107: 24,40,37,255
108: 174,207,200,255
109: 143,147,145,255
110: 225,248,232,255
111: 103,120,104,255
112: 8,24,8,255
113: 87,104,86,255
114: 212,232,210,255
115: 181,200,175,255
116: 163,171,158,255
117: 229,248,216,255
118: 198,216,184,255
119: 147,172,126,255
120: 231,248,200,255
121: 200,216,168,255
122: 216,232,178,255
123: 200,216,151,255
124: 232,248,184,255
125: 212,232,146,255
126: 232,248,167,255
127: 189,207,105,255
128: 199,200,152,255
129: 248,248,71,255
130: 24,24,8,255
131: 145,144,57,255
132: 248,248,104,255
133: 216,216,135,255
134: 248,248,168,255
135: 200,200,136,255
136: 216,216,152,255
137: 232,232,168,255
138: 248,248,184,255
139: 216,216,168,255
140: 232,232,184,255
141: 248,248,200,255
142: 200,200,168,255
143: 120,120,101,255
144: 232,232,200,255
145: 248,248,216,255
146: 216,216,193,255
147: 200,200,184,255
148: 232,232,216,255
149: 248,248,232,255
150: 170,168,56,255
151: 201,194,72,255
152: 179,174,78,255
153: 229,223,101,255
154: 214,205,88,255
155: 196,189,104,255
156: 232,218,133,255
157: 246,233,151,255
158: 42,40,29,255
159: 148,136,82,255
160: 200,184,120,255
161: 216,200,136,255
162: 232,216,152,255
163: 248,232,168,255
164: 165,152,104,255
165: 114,106,76,255
166: 182,173,141,255
167: 248,216,115,255
168: 183,168,119,255
169: 147,139,114,255
170: 200,168,72,255
171: 216,184,88,255
172: 200,184,136,255
173: 216,200,152,255
174: 232,216,168,255
175: 248,232,184,255
176: 228,184,72,255
177: 200,168,88,255
178: 216,184,104,255
179: 81,74,58,255
180: 248,188,71,255
181: 232,185,88,255
182: 248,199,101,255
183: 200,168,104,255
184: 216,184,120,255
185: 232,200,136,255
186: 248,216,152,255
187: 168,152,120,255
188: 200,184,152,255
189: 216,200,168,255
190: 232,216,184,255
191: 219,167,72,255
192: 178,144,82,255
193: 248,231,200,255
194: 184,136,56,255
195: 216,168,88,255
196: 232,185,104,255
197: 248,200,123,255
198: 220,150,49,255
199: 130,93,40,255
200: 200,152,84,255
201: 184,152,104,255
202: 200,168,120,255
203: 216,184,136,255
204: 232,200,152,255
205: 248,216,168,255
206: 179,119,36,255
207: 160,114,54,255
208: 216,168,104,255
209: 232,184,120,255
210: 200,137,56,255
211: 232,168,88,255
212: 61,53,43,255
213: 146,115,80,255
214: 216,168,120,255
215: 248,200,152,255
216: 168,136,104,255
217: 184,152,120,255
218: 200,168,136,255
219: 216,184,152,255
220: 232,200,168,255
221: 248,216,184,255
222: 216,200,184,255
223: 248,232,216,255
224: 110,87,68,255
225: 248,184,135,255
226: 170,151,137,255
227: 184,136,104,255
228: 200,152,120,255
229: 216,168,136,255
230: 232,184,150,255
231: 248,200,168,255
232: 171,114,77,255
233: 168,136,120,255
234: 232,200,184,255
235: 200,183,174,255
236: 232,164,134,255
237: 200,168,154,255
238: 248,167,139,255
239: 171,119,104,255
240: 216,168,154,255
241: 184,133,121,255
242: 140,117,111,255
243: 232,213,208,255
244: 201,148,137,255
245: 235,181,172,255
246: 216,138,126,255
247: 41,24,23,255
248: 24,8,8,255
249: 248,232,232,255
250: 201,200,200,255
251: 248,248,248,255
252: 232,232,232,255
253: 104,104,104,255
254: 24,24,24,255
255: 8,8,8,255
Band 2 Block=16104x1 Type=Byte, ColorInterp=Alpha
Question
How can I get rid of those black issues?
I'd be happy to provide more info if needed.
Update 2020-05-06
I tried what's suggested in troubleshooting page: both prepare tileset and create RasterSource within Android app. The first command rio calc "(asarray (take a 1) (take a 2) (take a 3))" --co compress=lzw --co tiled=true --co blockxsize=256 --co blockysize=256 --name a=filename.tif filename255.tif failed with an error:
IndexError: index 1 is out of bounds for size 1
However my tif already uses LZW compression. So I tried the second command:
rio edit-info --nodata 0 filename255.tif
and uploaded the result to Mapbox.
The result was the same except that white background of the image became black as well:
I also tried the same steps with smaller image (409x306) as it's pointed here that Android has texture size limitation. The result is all the same:
The black borders should be transparent, but the raster image format Mapbox is using (JPG) does not support transparency, which is a known issue that exists in every gl-native-based SDK. This issue presents itself when you reference a style that has the raster layer built in.
As a workaround, you can follow Mapbox's troubleshooting guide on troubleshooting raster images with black backgrounds to make your tileset transparent and then add the tileset as a RasterSource within your Android application to display the raster tile as expected.
Please take a look at the following example as a reference for adding a RasterSource:
Add a WMS Source
Instead of calling the rasterSource using "mapbox://username.tilesetID", you need to call it similarly to the Add a WMS Source example. The code below will resolve your issue:
style.addSource(RasterSource( "albuquerque-source", TileSet( "tileset", "https://api.mapbox.com/v4/<username.tilesetID>/{z}/{x}/{y}.png?access_token=<your_access_token>" ), 256 ))