pytest with classes python - class

I wrote the following code :
publisher.py:
import six
from google.api_core.exceptions import AlreadyExists
from google.cloud.pubsub import types
class publisher(object):
"""Publisher Object which has the following attributes
Attributes:
pubsub: publisher client
project_name: Name of project
topic_name: Name of topic
"""
def __init__(self, pubsub, project_name, topic_name, batch_settings=(), *args, **kwargs):
self.pubsub = pubsub
self.project_name = project_name
self.topic_name = topic_name
self.batch_settings = types.BatchSettings(
*batch_settings) # Batch setting Pub/Sub accepts a maximum of 1,000 messages in a batch,
# and the size of a batch can not exceed 10 megabytes
def _full_project_name(self):
"""Returns Fully Qualified Name of project"""
return self.pubsub.project_path(self.project_name)
and I wrote 3 test unfortunately the third one has been failing.
Below is the code I wrote for tests:
test_publisher.py:
from google.cloud import pubsub
import pytest
from publisher import publisher
PROJECT = 'ProjectTest'
TOPIC_NAME = 'TopicTest'
#pytest.fixture
def pubsub():
yield pubsub.PublisherClient()
def test_init_value():
sample_publisher=publisher(pubsub,PROJECT,TOPIC_NAME,())
assert sample_publisher.project_name == 'ProjectTest'
assert sample_publisher.topic_name == 'TopicTest'
assert sample_publisher.pubsub == pubsub
assert sample_publisher.batch_settings.max_messages == 1000
assert sample_publisher.batch_settings.max_bytes == 10 * (2 ** 20)
assert sample_publisher.batch_settings.max_latency == 0.05
def test_init_with_no_values():
with pytest.raises(Exception) as e_info:
sample_bad_init = publisher()
def test_full_project_name ():
sample_publisher = publisher(pubsub, PROJECT, TOPIC_NAME, ())
assert sample_publisher._full_project_name() == 'projects/ProjectTest'
I am currently getting the following error, which I can't understand, unfortunately:
line 26, in _full_project_name
return self.pubsub.project_path(self.project_name)
AttributeError: 'function' object has no attribute 'project_path'
Any help with this, please.
Thanks a lot

The name of fixture should be changed.
#pytest.fixture
def google_pubsub():
yield pubsub.PublisherClient()
You should add google_pubsub as argument to test test_full_project_name(google_pubsub) and test_init_value(google_pubsub).
In Test test_init_value you use module pubsub imported from from google.cloud import pubsub, what is wrong.
Test test_init_value passes because you comparing module(pubsub) in line
assert sample_publisher.pubsub == google_pubsub

Related

pytest - mockup a complex module import

I have found several posts on how to "hide" a package and simulate an ImportError with pytest, however, I haven't succeeded in my case and I am looking for some help:
Test for import of optional dependencies in __init__.py with pytest: Python 3.5 /3.6 differs in behaviour
Test behavior of code if optional module is not installed
and related
Here is the content of an __about__.py file that I want to test with pytest.
"""Get the metadata from the package or from setup.py."""
try:
import importlib
metadata = importlib.metadata
except ImportError:
import importlib_metadata as metadata
try:
data = metadata.metadata("mypackage")
__version__ = data["Version"]
__author__ = data["Author"]
__name__ = data["Name"]
except metadata.PackageNotFoundError:
# The repo of the package is accessible to python to get at least the version
import re
from pathlib import Path
try:
from nested_grid_plotter import __file__ as loc
with open(Path(loc).parent.joinpath("../setup.py"), "r") as f:
data = f.read()
except FileNotFoundError:
data = ""
def version_parser(v):
"""Parse the version from the setup file."""
version_pattern = (
r"""(version\s*=\s*)["|'](\d+(=?\.(\d+(=?\.(\d+)*)*)*)*)["|']"""
)
regex_matcher = re.compile(version_pattern).search(v)
if regex_matcher is None:
return "unknwon"
return regex_matcher.group(2)
try:
__version__ = version_parser(data)
except Exception:
__version__ = "unknown"
__author__ = "unknown"
__name__ = "unknown"
Here is the __init__.py at the root of the package:
from .__about__ import __version__, __name__, __author__
And here is the tests that I have come up with until now. However, I am not able to hide importlib.
"""Test the file __about__.py."""
import pytest
import sys
class PackageDiscarder:
def __init__(self):
self.pkgnames = []
def find_spec(self, fullname, path, target=None):
if fullname in self.pkgnames:
raise ImportError()
#pytest.fixture
def no_requests():
sys.modules.pop("importlib", None)
d = PackageDiscarder()
d.pkgnames.append("importlib")
sys.meta_path.insert(0, d)
yield
sys.meta_path.remove(d)
#pytest.fixture(autouse=True)
def cleanup_imports():
yield
sys.modules.pop("mypackage", None)
def test_requests_available():
import mypackage
assert mypackage.__version__ != "unknwon"
#pytest.mark.usefixtures("no_requests")
def test_requests_missing():
import mypackage
assert mypackage.__version__ != "unknwon"
Here is the coverage report:
Name Stmts Miss Cover Missing
----------------------------------------------------------------
mypackage/__about__.py 31 10 68% 5-6, 10-12, 23-24, 33, 38-39
----------------------------------------------------------------
TOTAL 31 10 68%

Is there way to show test author name in pytest-html reports for each tests?

Is there way to show test author name in pytest-html reports for each tests ?
Yes. You can do that. Put __author__ attribute in each test module.
# test_add.py
__author__ = 'Vivek R'
def add(x, y):
return x + y
def test_add():
assert add(5, 4) == 9
And call some fixtures in conftest.py file.
# conftest.py
from py.xml import html
import pytest
def pytest_html_results_table_header(cells):
cells.append(html.th("Author"))
def pytest_html_results_table_row(report, cells):
cells.append(html.td(report.author))
#pytest.hookimpl(hookwrapper=True)
def pytest_runtest_makereport(item, call):
outcome = yield
report = outcome.get_result()
report.author = item.module.__author__

Copy contents of tmp_path -> tmp_path_factory for use in the next test

Test_1 writes out a file tree to the standard tmp_path fixture.
Test_2 requires this file tree as the input to its own test.
I am using shutil.copytree() however I am getting an error:
import pytest
import shutil
import os
def test_1(tmp_path, tmp_path_factory):
p = tmp_path / "me"
shutil.copytree(p, tmp_path_factory, dirs_exist_ok=True)
assert True
def test_2(tmp_path_factory):
l = list(tmp_path_factory.iterdir())
print(l)
assert False
Error:
p = TempPathFactory(_given_basetemp=None, _trace=<pluggy._tracing.TagTracerSub object at 0x000002161F3F4BE0>, _basetemp=WindowsPath('C:/Users/David/AppData/Local/Temp/pytest-of-David/pytest-1125'))
def split(p):
"""Split a pathname.
Return tuple (head, tail) where tail is everything after the final slash.
Either part may be empty."""
> p = os.fspath(p)
E TypeError: expected str, bytes or os.PathLike object, not TempPathFactory
Any ideas? Many thanks :)
Thanks to #hoefling, this works
import pytest
import shutil
from directory_tree import display_tree
#pytest.fixture(scope="session")
def cache_dir(tmp_path_factory):
return tmp_path_factory.mktemp("cache")#, numbered=False)
def test_1(tmp_path, cache_dir):
p = tmp_path / "me.txt"
p.touch()
shutil.copytree(p.parent, cache_dir, dirs_exist_ok=True)
assert True
def test_2(cache_dir):
display_tree(cache_dir)
assert False

Error in running Apache Beam Python SplittableDoFn

Error encountered while trying pubsub io > splittable dofn
RuntimeError: Transform node
AppliedPTransform(ParDo(TestDoFn)/ProcessKeyedElements/GroupByKey/GroupByKey,
_GroupByKeyOnly) was not replaced as expected.
Can someone help me with reviewing the code for anything I might be doing incorrectly in there
Code:
"""
python examples/test_restriction_unbounded.py --project mk2 --topic projects/mk2/topics/testing
"""
# pytype: skip-file
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import csv
import logging
import sys
import time
from datetime import datetime
import apache_beam as beam
from apache_beam.options.pipeline_options import GoogleCloudOptions
from apache_beam.options.pipeline_options import PipelineOptions
from apache_beam.options.pipeline_options import SetupOptions
from apache_beam.options.pipeline_options import StandardOptions
from apache_beam.io.restriction_trackers import OffsetRestrictionTracker, OffsetRange
from apache_beam.transforms.core import RestrictionProvider
class TestProvider(RestrictionProvider):
def initial_restriction(self, element):
return OffsetRange(0, 1)
def create_tracker(self, restriction):
return OffsetRestrictionTracker(restriction)
def restriction_size(self, element, restriction):
return restriction.size()
class TestDoFn(beam.DoFn):
def process(
self,
element,
restriction_tracker=beam.DoFn.RestrictionParam(
TestProvider())):
import pdb; pdb.set_trace()
cur = restriction_tracker.current_restriction().start
while restriction_tracker.try_claim(cur):
return element
def run(argv=None, save_main_session=True):
parser = argparse.ArgumentParser()
parser.add_argument('--topic', type=str, help='Pub/Sub topic to read from')
args, pipeline_args = parser.parse_known_args(argv)
options = PipelineOptions(pipeline_args)
options.view_as(StandardOptions).streaming = True
with beam.Pipeline(options=options) as p:
# data = ['abc', 'defghijklmno', 'pqrstuv', 'wxyz']
# actual = (p | beam.Create(data) | beam.ParDo(ExpandingStringsDoFn()))
scores = p | beam.io.ReadFromPubSub(topic=args.topic) | beam.ParDo(TestDoFn())
if __name__ == '__main__':
logging.getLogger().setLevel(logging.INFO)
run()
You are ingesting data from pub/sub by steaming. Then you have to create batches by window before apply this kind of transforms: (ParDo(TestDoFn)/ProcessKeyedElements/GroupByKey/GroupByKey, _GroupByKeyOnly)
Pub/Sub with window example: https://cloud.google.com/pubsub/docs/pubsub-dataflow
Try to do like this:
class GroupWindowsIntoBatches(beam.PTransform):
"""A composite transform that groups Pub/Sub messages
"""
def __init__(self, window_size):
# Convert minutes into seconds.
self.window_size = int(window_size * 60)
def expand(self, pcoll):
return (
pcoll
# Assigns window info to each Pub/Sub message based on its
# publish timestamp.
| "Window into Fixed Intervals"
>> beam.WindowInto(window.FixedWindows(self.window_size))
)
def run(argv=None, save_main_session=True):
parser = argparse.ArgumentParser()
parser.add_argument('--topic', type=str, help='Pub/Sub topic to read from')
args, pipeline_args = parser.parse_known_args(argv)
options = PipelineOptions(pipeline_args)
options.view_as(StandardOptions).streaming = True
window_size = 1.0
with beam.Pipeline(options=options) as p:
scores = (p
| beam.io.ReadFromPubSub(topic=args.topic)
| "WindowInto" >> GroupWindowsIntoBatches(window_size)
| beam.ParDo(TestDoFn())
)
I had the same error. Removing the streaming option solved the problem for me.

mocking snowflake connection

I have a SnowflakeApi class in python which just works as a wrapper on top of the SnowflakeConnection class. My SnowflakeApi is
import logging
import os
from snowflake.connector import connect
class SnowflakeApi(object):
"""
Wrapper to handle snowflake connection
"""
def __init__(self, account, warehouse, database, user, pwd):
"""
Handles snowflake connection. Connection must be closed once it is no longer needed
:param account:
:param warehouse:
:param database:
"""
self.__acct = self._account_url(account)
self.__wh = warehouse
self.__db = database
self.__connection = None
self.__user = user
self.__pwd = pwd
def __create_connection(self):
try:
# set the proxy here
conn = connect(
account=self.__acct
, user=self.__user
, password=self.__pwd
, warehouse=self.__wh
, database=self.__db
)
return conn
except:
raise Exception(
"Unable to connect to snowflake for user: '{0}', warehouse: '{1}', database: '{2}'".format(
self.__user, self.__wh, self.__db))
def get_connection(self):
"""
Gets a snowflake connection. If the connection has already been initialised it is returned
otherwise a new connection is created
:param credentials_func: method to get database credentials.
:return:
"""
try:
if self.__connection is None:
self.__connection = self.__create_connection()
return self.__connection
except:
raise Exception("Unable to initalise Snowflake connection")
def close_connection(self):
"""
Closes snowflake connection.
:return:
"""
self.__connection.close()
Namespace for SnowflakeApi is connection.snowflake_connection.SnowflakeApi (i.e. i have snowflake_connection.py in a folder called connections)
I want to write unit tests for this class using pytest and unittest.mock. The problem is I want to mock 'connect' so that a MagicMock object is returned and no database call is made. So far I have tried:
monkeypatch.setattr(connections.snowflake_connection,"connect",return_value = "")
Changed my original class to just import snowflake. I then created a mock object and used monkeypatch.setattr(snowflake_connection,"snowflake",my_mock_snowflake). That didn't work either
In short, I have tried a couple of other things but nothing has worked. All I want to do is mock snowflake connection so no actual database call is made.
Here is another way where we are mocking snowflake connector, cursor and fetch_all using python mock and patch.
import mock
import unittest
from datetime import datetime, timedelta
import feed_daily_report
class TestFeedDailyReport(unittest.TestCase):
#mock.patch('snowflake.connector.connect')
def test_compare_partner(self, mock_snowflake_connector):
tod = datetime.now()
delta = timedelta(days=8)
date_8_days_ago = tod - delta
query_result = [('partner_1', date_8_days_ago)]
mock_con = mock_snowflake_connector.return_value
mock_cur = mock_con.cursor.return_value
mock_cur.fetchall.return_value = query_result
result = feed_daily_report.main()
assert result == True
An example using unittest.mock and patching the connection:
from unittest import TestCase
from unittest.mock import patch
from connection.snowflake_connection import SnowflakeApi
class TestSnowFlakeApi(TestCase):
#patch('connection.snowflake_connection.connect')
def test_get_connection(self, mock_connect)
api = SnowflakeApi('the_account',
'the_warehouse',
'the_database',
'the_user',
'the_pwd')
api.get_connection()
mock_connect.assert_called_once_with(account='account_url', # Will be the output of self._account_url()
user='the_user',
password='the_pwd',
warehouse='the_warehouse',
database='the_database')
If you're testing other classes that use your SnowFlakeApi wrapper, then you should use the same approach, but patch the SnowFlakeApi itself in those tests.
from package.module.SomeClassThatUsesSnowFlakeApi
class TestSomeClassThatUsesSnowFlakeApi(TestCase):
#patch('package.module.SnowFlakeApi')
def test_some_func(self, mock_api):
instance = SomeClassThatUsesSnowFlakeApi()
instance.do_something()
mock_api.assert_called_once_with(...)
mock_api.return_value.get_connection.assert_called_once_with()
Also note that if you're using Python 2, you will need to pip install mock and then from mock import patch.
Using stubbing and dependency injection
from ... import SnowflakeApi
def some_func(*args, api=None, **kwargs):
api = api or SnowflakeApi(...)
conn = api.get_connection()
# Do some work
return result
Your test
class SnowflakeApiStub(SnowflakeApi)
def __init__(self):
# bypass super constructor
self.__connection = MagicMock()
def test_some_func():
stub = SnowflakeApiStub()
mock_connection = stub.__connection
mock_cursor = mock_connection.cursor.return_value
expect = ...
actual = some_func(api=stub)
assert expect == actual
assert mock_cursor.execute.called
An example using cursor, execute, and fetchone.
import snowflake.connector
class AlongSamePolly:
def __init__(self, conn):
self.conn = conn
def row_count(self):
cur = self.conn.cursor()
query = cur.execute('select count(*) from schema.table;')
return query.fetchone()[0] # returns (12345,)
# I like to dependency inject the snowflake connection object in my classes.
# This lets me use Snowflake Python Connector's built in context manager to
# rollback any errors and automatically close connections. Then you don't have
# try/except/finally blocks everywhere in your code.
#
if __name__ == '__main__':
with snowflake.connector.connect(user='user', password='password') as con:
same = AlongSamePolly(con)
print(same.row_count())
# => 12345
In the unittests you mock out the expected method calls - cursor(), execute(),
fetchone() and define the return value to follow up the chain of defined mocks.
import unittest
from unittest import mock
from along_same_polly import AlongSamePolly
class TestAlongSamePolly(unittest.TestCase):
def test_row_count(self):
with mock.patch('snowflake.connector.connect') as mock_snowflake_conn:
mock_query = mock.Mock()
mock_query.fetchone.return_value = (123,)
mock_cur = mock.Mock()
mock_cur.execute.return_value = mock_query
mock_snowflake_conn.cursor.return_value = mock_cur
same = AlongSamePolly(mock_snowflake_conn)
self.assertEqual(same.row_count(), 123)
if __name__ == '__main__':
unittest.main()
The following Solution Worked for me.
def test_connect(env_var_setup, monkeypatch):
monkeypatch.setattr(snowflake.connector.connection.SnowflakeConnection,
"connect", mocked_sf_connect
)
# calling snowflake connector method
file_job_map(env_var_setup).connect()
#mocked connection
def mocked_sf_connect(self, **kwargs):
print("Connection Successfully Established")
return True