UE4 get all players in FoV - unreal-engine4

I'm trying to build an array of all player pawns that are in the players FoV cone. I'd prefer to not have to loop through GetAllActorsofClass for obvious performance reasons. This will be done every tick.

GetAllActorsOfClass iterates over a hash table of things of that class. Even with 100 players it is unlikely to be very costly. I would imagine that a "get actors in frustum" would just do that under the hood.
If you are okay with using it, from there you would use ConvertWorldLocationToScreenLocation and compare that to the screen bounds coordinates with GetViewportSize.
The only method the wouldn't use GetAllActorsOfClass I can think of offhand is to calculate the size of the rectangle at the "end" of the frustum, using a giant multi box trace, and filtering based on the dot product. Traces are cheap, dot product is cheap. Whether or not it's cheaper than GetAllActorsOfClass is going to be specific to your game.
If performance is really a problem the best solution is to use code. Depending on your implementation you might be able to use Blueprint nativization to get an extra boost without digging into code.

Use MultiSphereTrace from your player to his FOV direction and loop through hit results.
Make sure you set the collision layer correctly so the trace only interact with target player.
I do this on my mobile game with around 10-20 actors per frame, and it works fine.

Related

Raycasting Layermask vs RaycastAll

Hi I have a small question on how the raycasting with layermasks work vs using RaycastAll.
I am trying to project my rays from inside my object and layermask the rays to collide with the same layer as the original object, therefore i need to ignore the "hit" on the original object itself.
My question is: when Raycasting uses a layermask does it register a collision with other undesirable layers too and then simply ignore them, or does it not even register a collision with those layers in the first place? Would it be worse or equal on performance if I used RaycastAll to logically decide to respond to a layer or not vs somehow using strictly layermasks? Or is it not even an appreciable difference?
I know some posts say that "if you cast it from inside the object it wont collide with that object" but evidently it does.
Thanks
You can take a look at official Unity's physics preformance tutorial. To start with, Raycast is rather cheap operation but it's performance really depends on how you actually do Raycasting. For example, for one of your questions - RaycastAll is more expensive than doing Raycast on a separate layer, it's also mentioned in the link above. It's based on how actually physics work. Unity doesn't implement physics itself, instead it uses existing solutions (like PhysiX for 3d, and earlier it was Box2d for 2d physics).
Also the length of your ray actually influences Raycast's performance. The shorter ray you cast the better performance you get. The worst case is Raycasting to infinity. Another case is that Collider.Raycast is cheaper than Physics.Raycast.
It's no secret, that there is nothing more that some bunch of math equations behind physics in game development so you may thing in such things - the simplier equation you have, the better performance and time to complete you get. So Raycast can be treated as system of equations where you have the equation of the line (actual Raycast) and some number of equations, which describe some 2d/3d object in plane/space and the task is two calculate the points of intersection between your line (Ray) and other objects.
If you don't have complex physics in your game you may not see the difference between RaycastAll and Raycast with layermask, or shorter ray's length, but performance really differs.

To use GKAgents or not

I am developing (or atleast trying to develop)
a decently big real time tactics game (something similar to RTS) using SpriteKit.
I am using GamePlay kit for pathfinding.
Initially I used SKActions to move the sprites within the Path but fast enough I realized that it was a big mistake.
Then I tried to implement it with GKAgents (this is my current state)
I feel that GKAgents are very raw and premature also they are following some strange Newton Law #1 that makes them to move forever (I can't think of any scenario where it would be useful - maybe for presentations at WWDC)
as well as I see that they have some Angular speed to perform rotations
which I don't need at all and can't really find how to disable it...
As well as GKBehaviors given a GKGoals seems to make some weird thing...
Setting behavior to avoid obstacles makes my units to joggle around them...
Setting behavior with follow path goal completely ignores everything unless the maxPredictionTime is low enough...
I am not even willing to tell what happens when I combine both them.
I feel broken...
I feel like I have 2 options now:
1) to struggle more with those agents and trying to make them behave as I wish
2) To roll all the movement on my own with help by GKObstacleGraph and a path Finding (which is buggy as well I have to say at some points the path to the point will generate the most awful path like "go touch that obstacle then reverse touch that one then go to the actual point (which from the beginning could be achieved by a straight line)").
Question is:
What would be the best out of those options ?
One of the best ways (in SpriteKit/GameplayKit) to get the kind of behavior you're after is to recognize that path planning and path following need not be the same operation. GameplayKit provides tools for both — GKObstacleGraph is good for planning and GKAgent is good for following a planned path — and they work best when you combine the strengths of each.
(It can be a bit misleading that GKAgent provides obstacle avoidance; don't think of this in the same way as finding a route around obstacles, more like reacting to sudden obstacles in your way.)
To put it another way, GKObstacleGraph and GKAgent are like the difference between navigating with a map and safely driving a car. The former is where you decide to take CA-85 and US-101 instead of I-280. (And maybe reevaluate your decision once in awhile — say, to pick a different set of roads around a traffic jam.) The latter is where you, continuously moment-to-moment, change lanes, avoid potholes, pass slower vehicles, slow down for heavy traffic, etc.
In Apple's DemoBots sample code, they break this out into two steps:
Use GKObstacleGraph to do high level path planning. That is, when the bad guys are "here" and the hero is "way over there", and there are some walls in between, select a series of waypoints that roughly approximates a route from here to there.
Use GKAgent behaviors to make the character roughly follow that path while also reacting to other factors (like making the bad guys not step on each other and giving them vaguely realistic movement curves instead of simply following the lines between waypoints).
You can find most of the relevant stuff behind this in TaskBotBehavior.swift in that sample code — start from addGoalsToFollowPath and look at both the places that gets called and the calls it makes.
As for the "moving forever" and "angular speed" issues...
The agent simulation is a weird mix of a motivation analogy (i.e. the agent does what's needed to move it toward where it "wants" within constraints) and a physics system (i.e. those movements are modeled like forces/impulses). If you take away an agent's goals, it doesn't know that it needs to stop — instead, you need to give it a goal of stopping. (That is, a movement speed goal of zero.) There might be a better model than what Apple's chosen here — file bugs if you have suggestions for design improvements.
Angular speed is trickier. The notion of agents' intrinsic physical constraints being sort of analogous to, say, vehicles on land or boats at sea is pretty well baked into the system. It can't really handle things like space fighters that have to reorient to vector their thrust, or walking creatures that can just as happily walk sideways or backwards as forward — at least, not on its own. You can get some mileage toward changing the "feel" of agent movement with the maxAcceleration property, but you're limited by the fact that said property covers both linear and angular acceleration.
Remember, though, that the interface between what the agent system "wants" and what "actually happens" in your game world is under your control. The easiest way to implement GKAgentDelegate is to just sync the velocity and position properties of the agent and the sprite that it represents. However, you don't have to do it that way — you could calculate a different force/impulse and apply it to your sprite.
I can't comment yet so I post as an answer. I faced the same problem recently: agent wiggling around the target or the agent that keeps moving even if you remove the behavior. Then I realized that the behavior is just the algorithm controling the movement, but you can still access and set the agent's speed, position and angle by hand.
In my case, I have a critter entity that chases for food in the scene. When it makes contact with the food agent, the food entity is removed. I tried many things to make the critter stop after eating the food (it would keep going in a straight line). And all I had to do was to set its speed to 0. That is because the behavior will influence not the position directly, but the speed/angle combination instead (from what I understand). When there is no goal for the entity, it doesn't "want" to change it's state, so whatever speed and direction it reached, it will keep. It will simply not update/change it. So unless you create a goal to make it want to stop, it will wiggle/keep going. The easy way is to set the behavior to nil and set the speed to 0 yourself.
If the behavior/goal system doesn't do it for the type of animation you are looking for, you can still use the Agent system and customize the movement with the AgenDelegate protocol and the update method and make it interact with other agents later on. You can even synchronize the agent with a node that is moved with the physics engine or with actions (or any other way).
I think the agent system is nice to keep around since you can use it later, even if it's only for special effects. But just as mixing actions and physics can give some weird results, mixing goal/behaviors and any other "automated" tool will probably result in an erratic behavior.
You can also use the agent system for other stuff than moving an actual sprite around. For example, you could use an agent to act as a "target seeker" to simulate reaction time for your enemies. The agent moves around the scene and finds other agents, when it makes contact with a suitable target, the enemy entity would attack it (random idea).
It's not a "one size fits all" solution, but it's a very nice tool to have.

interaction with objects in xna

I'm new to using xna and I want to make my player collide with with multipe walls from the same class. So I looked around and I understood that the best way for doing that is to create a list of variables containing the walls id's and make a loop that circles them all and then returns the variable of the objects that collide.
My question is if there is a faster more efficient way for doing that? I mean if I have like 10000 objects that loop can cause a lot of memory use.
Thx in advance
Option 1) If these 10000 object are walls of a level, then you should probably use some sort of grid (like this very old example: https://en.wikipedia.org/wiki/The_Legend_of_Zelda#mediaviewer/File:Legend_of_Zelda_NES.PNG)
With a grid you only have to check collision with adjacent objects, or only with objects that are nearby.
Option 2) If these 10000 objects are enemies or bullets that move more freely, then you could also calculate the distance first and only check for collision if the objects are nearby.
But may I ask why you are using XNA? I used to work with XNA 4.x but in my understanding it is pretty much dead (http://www.computerandvideogames.com/389018/microsoft-email-confirms-plan-to-cease-xna-support). If you're new to XNA, I would advice to use other software to make games (like Unity3D). In Unity3D the hard part of collision detection is done for you (is has standard functions for collision detection) and Unity3D also works with C# (like XNA)
You always want to do the least amount of processing to get the job done. For a tiled 2D game you usually have a 2 dimensional grid. When the player want to walk on a certain tile you can check that tile if it is allowed to walk there. In this case you just have to check a single tile. If you have a lot of NPC's you could divide your map into sections and keep track of in what sections the NPC's are. Now you just have to do collision detection on the enemies within your section.
When you need expensive collision, pixel perfect or polygon collision you should first check if an object is even close with a simple radius float or BoundingSphere only then you go on with more expensive collision detection.
Same goes for pretty much anything, if you have a 100x100 tilemap but only need to draw 20x10 for the screen then you should just render that portion by calculations. In unreal, mappers create invisible boxes, when inside these boxes it only draws a certain part of the map and only checks collision within these boxes. GameDev is all about tricks to make things work smoothly.

How to make Hinge Joint more rigid

I'm trying to create a chain in unity3d. A player should be capable of grabing one side of it and pull it to different location. So i created some grids and connect them together. It all works fine, the problem is only when user pulls a bit faster, then I got some spaces bettwen seperate grids. Is there anyway to set max distance on that?
Btw. I'm doing these in 2d so i have 2d Rigidbody and 2d Hinge joint.
Thanks!
The solverIterationCount of rigidbodies affects the smoothness of physics when they are moving fast. You should try increasing it or dynamically adjusting it according to the speed of the rigidbodies to increase stabilty
http://docs.unity3d.com/Documentation/ScriptReference/Physics-solverIterationCount.html
There a number of ways to tackle this issue, all with the up sides and down sides:
increasing accuracy:: this is usually the first place new game designers go, and crank up accuracy to the max. But then end up playing the price later when performance plummets. So be gentle, try to find a good balance, and if it does not cut it make up the rest with other tricks.
The main ways to increase accuracy are, increasing fixed times interval, and increasing ridged body Iteration count
.
Increasing restrictions::This often requires the most time, but cutting corners allows for smoother more predictable physics and can increase performance
small example:: the top link of the chain only needs to simulate rotation on the ridged body
.
Cheating:: find any way to make things easier, fake it
for example:: does the image really need to match the physics? Why not make sure the sprites stick together, but alow the physics to have small gaps
playing with the same concept more or less this week, experimented some with 2D Unity joints, I think the issue you are having is identical to one I had yesterday, the force you are applying 'breaks' joints for some frames, hence that almost 'spring' joint effect, make sure the mass and/or force applied are not too heavy, also maybe increase the chain parts mass, makes the joints more solid too.
In Editor, Hinge Joint -> Use Spring = true; Spring/Damper/Target Position = 0.

How should I have my game entities knowledgeable of the things around them?

Every enemy type in my game is a different class, and the instances are stored in a C array. In the main game loop update() is run for each enemy/item instance, and draw() is run. Some of the update() commands require knowledge of where the main player is. What would be the best route to get that information to the instance? I don't think a global variable is the smart way to do it, since multiplayer options may be added later.
This is only an example of the bigger problem, which is how things in the game are supposed to know about each other. How would enemies know they're colliding with other enemies for example.
Your need to build a multi-branched tree type structure (not simple binary tree). The nodes are the locations in the game. Each node can contain multiple simple stuctures/objects pointers (depending on your programming language). As the player moves around the game you move your player position pointer to the tree node representing the location. When you start the game this tree type stucture is populated with things to pick up, monsters etc. A random seed can also be use to scatter monsters around.
This helps the speed of the game as you only have to search current node and nodes one step away from your current location/node. Any routines triggered that monsters advance or retreat just move the monsters pointer to the next node or nodes. If a med pack is used then its pointer is destroyed from the room/node that it is in.
Good luck
One way to make the search a bit more efficient is to split the entities being updated into a quad tree. The tree would get divided based on location on the screen or in the game world you have setup. This way you can set it up so only near by entities get updated. So for example if you're doing hit detection you can totally ignore large groups.
quad trees
hope that helps
A Controller entity?
You need to think carefully about using plain arrays, linear searches through large arrays can be very time consuming to search for things like collisions.
All entities in the game, including the player, should be in the same container. Your AI will loop through them every frame and call some function that executes all the goals of every entity.
Entities (like the player) have access to all other entities through the same container.
You'll have to get clever about the container to make the entity access to the container efficient, however.