For example,
(require racket/generator)
(define f add1)
(define init 0)
(in-producer (generator () (let loop ([x init]) (yield x) (loop (f x)))))
Is there any better way to do this? I don't quite like generators since they have hidden states.
Streams
Using streams is probably the easiest:
(require racket/stream)
;; X [X -> X] -> [Streamof X]
(define (repeated-fn-stream init f)
(stream-cons init (repeated-fn-stream (f init) f)))
(repeated-fn-stream 0 add1)
Sequences
Alternatively, using sequences and make-do-sequence:
(require racket/sequence)
;; X [X -> X] -> [Sequenceof X]
(define (repeated-fn-sequence init f)
;; A "Pos" is an X that's the result of applying f repeatedly to init
(define (pos->element pos) pos)
(define (next-pos pos) (f pos))
(define init-pos init)
(make-do-sequence
(λ ()
(values pos->element
next-pos
init-pos
#false
#false
#false))))
(repeated-fn-sequence 0 add1)
If you wanted to use sequences, and you wanted to use define-sequence-syntax to make for loops specialize it:
(this is completely unnecessary for "pure" functionality, but it may have different performance characteristics)
(require (for-syntax syntax/parse))
(define-sequence-syntax in-repeated-fn-sequence
(λ () #'repeated-fn-sequence) ; when used as a normal expression
(syntax-parser ; when used *directly* as a for-loop clause
[[(x) (_ init-expr f-expr)]
#'[(x) (:do-in
([(init) init-expr] [(f) f-expr])
#true
([x init])
#true
()
#true
#true
[(f x)])]]))
(for/list ([x (in-repeated-fn-sequence 0 add1)]
[i (in-range 10)])
x)
When using define-sequence-syntax, you should make sure that for everything there is a "single point of truth". Because of that you often see this pattern:
(define-sequence-syntax in-___
(λ () #'in-___/proc) ; when used as a normal expression
(syntax-parser
....everything that defines the actual functionality....))
;; This is completely determined by the sequence-syntax above,
;; that way there is NO duplicated functionality and NO chance for
;; it to get "out of sync".
(define (in-___/proc parameter ...)
(for/stream ([elem (in-___ parameter ...)])
elem))
What that means for this is that once you decide you want to use define-sequence-syntax, you should define the repeated-fn-sequence function in terms of it:
(define (repeated-fn-sequence init f)
(for/stream ([elem (in-repeated-fn-sequence init f)])
elem))
That way if the in-repeated-fn-sequence needs to be changed to fix a bug or switch representations, the function version changes with it automatically.
The best function for this job is an unfold… but unfortunately, Racket does not provide a built-in sequence-unfold or stream-unfold operation. However, there is a stream-unfold operation in the srfi/41 library, which will meet your needs. You can see this in action with the following program:
#lang racket
(require (only-in srfi/41 stream-unfold))
(define nats (stream-unfold identity (const #t) add1 0))
(for/list ([i (in-range 20)] [n nats]) n)
This produces the following output:
'(0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19)
If you don’t want to use srfi/41, you can write stream-unfold yourself in terms of the racket/stream API without too much difficulty, and without any statefulness:
(define (stream-unfold mapper pred? gen base)
(let loop ([base base])
(if (pred? base)
(stream-cons (mapper base) (loop (gen base)))
empty-stream)))
Related
In some dialects of LISP, there is a distinction between SET and SETQ, the first one evaluates its first argument so that you need to use the (SET (QUOTE …) …) syntax.
Since in Racket, quoting is not needed in definitions, define behaves as SETQ.
Is there a Racket function that behaves like SET? If no, how to write one?
I tried (define (SET a b) (define (eval a) b) b) but it does not seem to work when providing it to an other language with (provide SET).
Here's my quick attempt at this problem:
;; lib.rkt
#lang racket/base
(provide (rename-out [#set set]
[##%top #%top]
[#set! set!]
[#define define]))
(require syntax/parse/define)
(define env (make-hash))
(define (set x v stx)
(unless (hash-has-key? env x)
(raise-syntax-error #f "undefined id" stx))
(hash-set! env x v))
(define-simple-macro (##%top . x)
(hash-ref
env
'x
(λ () (raise-syntax-error #f "unbound id" (quote-syntax x)))))
(define (#set x v)
(set x v x))
(define-simple-macro (#set! x:id v)
(set 'x v (quote-syntax x)))
(define-simple-macro (#define x:id v)
(begin
(when (hash-has-key? env 'x)
(raise-syntax-error #f "id already defined" (quote-syntax x)))
(hash-set! env 'x v)))
#lang racket/base
(require "lib.rkt")
(define x 1)
(set (if #t 'x 'y) 2)
(add1 x) ; 3
(set! x 3)
(add1 x) ; 4
(add1 y) ; y: unbound id in: y
Note that this differs from original Racket in several ways. For example:
unbound ids are now reported at runtime instead of compile-time.
set! now won't work with set!-transformer.
define can't be used to define functions
define can't be used to shadow an identifier.
For (2) and (3), it's possible to get the original behavior back, but I don't want the answer to be too long, so I didn't include the full functionality. For now, I don't know how to solve (4).
Also note that you can only set identifiers defined via define. If you want to set identifiers defined via lambda, let, etc., you need to redefine these constructs too.
I would do it much less verbose and much simpler.
Since all arguments are evaluated, the set or let's say define% can be defined as a function!
(define (define% x y)
(eval `(define ,x ,y)))
One can even define functions using define% when using old-style form using lambda.
(define 'ab (lambda (x y) (+ x y)))
(ab 3 5) ;; 7
It even behaves correctly in terms of scope
(define (foo x)
(define% 'bar (lambda (x) (+ 1 x)))
(bar (bar (bar x))))
foo
;; #<procedure:foo>
bar
; bar: undefined;
; cannot reference undefined identifier
; [,bt for context]
(foo 3)
6
;; after first call however, bar is available in global environment
;; as pointed out by #AlexKnauf
bar
;; #<procedure:bar>
Thus there are some scoping issues ...
(let ((x 0))
(define% 'counter (lambda () (set! x (+ x 1)) x)))
counter
;; #<procedure>
(counter)
;; 1
(counter)
;; 2
(counter)
;; 3
I was looking for a way to repeat a function call a certain number of times and accumulate the results in a list and couldn't find anything in the standard library, so I wrote one. It's simple to write, but it seems like such an obvious thing that I feel like there must be an accepted way of doing this using standard library functions.
Here are the two functions I'm looking to replace:
(define (repeat n f)
(unless (<= n 0)
(f)
(repeat (sub1 n) f)))
(define (accumulate n f)
(let loop ([n n] [l empty])
(if (<= n 0)
l
(loop (sub1 n)
(cons (f) l)))))
Is there any simpler way of achieving this?
If your function does not any take arguments, you can use build-list
Example:
#lang racket
;; The function you want to call many times
(define (f)
#t)
;; Use build list with a lambda to wrap your function because
;; build-list want a function takin integer as its second argument
(build-list 5 (lambda (x) (f)))
result:
'(#t #t #t #t #t)
Edit: you can also define a function to wrap the lambda
(define (repeat-then-accumulate n f)
(build-list n (lambda (x) (f)))
)
Usage:
;; Using the f function defined earlier
(repeat-then-accumulate 10 f)
result:
'(#t #t #t #t #t #t #t #t #t #t)
Edit2: If you want to have fixed args, you could do something like
#lang racket
;; The function you want to call many times
(define (f a b)
(+ a b))
(define (repeat-then-accumulate n f args)
(build-list n (lambda (x) (apply f args)))
)
Usage:
(repeat-then-accumulate 10 f '(3 5))
Result:
'(8 8 8 8 8 8 8 8 8 8)
It looks like #AlexKnauth didn't feel like taking your internet points for his answer, and he phrased it as a comment. I'm not proud, though... Use racket's list comprehension form:
(for/list ([i (in-range n)]) (f i))
(I added an explicit "in-range", just to get better error-checking.)
As an exercise in learning the Racket macro system, I've been implementing a unit testing framework, based on the C++ catch framework. One of the features of that framework is that if I write a check like this:
CHECK(x == y); // (check x y)
When the check is violated the error message will print out the values of x and y, even though the macro used is completely generic, unlike other test frameworks that require you to use macros like CHECK_EQUALS, CHECK_GREATER, etc. This is possible through some hackery involving expression templates and operator overloading.
It occurs to me that in Racket you should be able to do an even better job. In the C++ version the macro can't see inside subexpressions, so if you write something like:
CHECK(f(x, g(y)) == z); // (check (= (f x (g y)) z))
When the check is violated you only find out the values of the left and right hand side of the equal sign, and not the values of x, y, or g(y). In racket I expect it should be possible to recurse into subexpressions and print a tree showing each step of the evaluation.
Problem is I have no idea what the best way to do this is:
I've gotten fairly familiar with syntax-parse, but this seems beyond its abilities.
I read about customizing #%app which almost seems like what I want, but if for example f is a macro, I don't want to print out every evaluation of the expressions that are in the expansion, just the evaluations of the expressions that were visible when the user invoked the check macro. Also not sure if I can use it without defining a language.
I could use syntax-parameterize to hijack the meaning of the basic operators but that won't help with function calls like g(y).
I could use syntax->datum and manually walk the AST, calling eval on subexpressions myself. This seems tricky.
The trace library almost looks like what it does what I want, but you have to give it a list of functions upfront, and it doesn't appear to give you any control over where the output goes (I only want to print anything if the check fails, not if it succeeds, so I need to save the intermediate values to the side as execution proceeds).
What would be the best or at least idiomatic way to implement this?
Here is something to get you started.
#lang racket
(require (for-syntax syntax/parse racket/list))
(begin-for-syntax
(define (expression->subexpressions stx)
(define expansion (local-expand stx 'expression '()))
(syntax-parse expansion
#:datum-literals (#%app quote)
[x:id (list #'x)]
[b:boolean (list #'b)]
[n:number (list #'n)]
; insert other atoms here
[(quote literal) (list #'literal)]
[(#%app e ...)
(cons stx
(append-map expression->subexpressions (syntax->list #'(e ...))))]
; other forms in fully expanded syntax goes here
[else
(raise-syntax-error 'expression->subexpressions
"implement this construct"
stx)])))
(define-syntax (echo-and-eval stx)
(syntax-parse stx
[(_ expr)
#'(begin
(display "] ") (displayln (syntax->datum #'expr))
(displayln expr))]))
(define-syntax (echo-and-eval-subexpressions stx)
(syntax-parse stx
[(_ expr)
(define subs (expression->subexpressions #'expr))
(with-syntax ([(sub ...) subs])
#'(begin
; sub expressions
(echo-and-eval sub)
...
; original expression
(echo-and-eval expr)))]))
(echo-and-eval-subexpressions (+ 1 2 (* 4 5)))
The output:
] (+ 1 2 (* 4 5))
23
] +
#<procedure:+>
] 1
1
] 2
2
] (#%app * '4 '5)
20
] *
#<procedure:*>
] 4
4
] 5
5
] (+ 1 2 (* 4 5))
23
An alternative to printing everything is to add a marker for stuff that should be shown. Here's a rough simple sketch:
#lang racket
(require racket/stxparam)
(define-syntax-parameter ?
(λ(stx) (raise-syntax-error '? "can only be used in a `test' context")))
(define-syntax-rule (test expr)
(let ([log '()])
(define (log! stuff) (set! log (cons stuff log)))
(syntax-parameterize ([? (syntax-rules ()
[(_ E) (let ([r E]) (log! `(E => ,r)) r)])])
(unless expr
(printf "Test failure: ~s\n" 'expr)
(for ([l (in-list (reverse log))])
(for-each display
`(" " ,#(add-between (map ~s l) " ") "\n")))))))
(define x 11)
(define y 22)
(test (equal? (? (* (? x) 2)) (? y)))
(test (equal? (? (* (? x) 3)) (? y)))
which results in this output:
Test failure: (equal? (? (* (? x) 3)) (? y))
x => 11
(* (? x) 3) => 33
y => 22
Often when I try to write a macro, I run up against the following difficulty: I need one form that is passed to the macro to be evaluated before being processed by a helper function that is invoked while generating the macro's expansion. In the following example, we are only interested in how we could write a macro to emit the code we want, and not in the uselessness of the macro itself:
Imagine (bear with me) a version of Common Lisp's lambda macro, where only the number of arguments is important, and the names and order of the arguments are not. Let's call it jlambda. It would be used like so:
(jlambda 2
...body)
where 2 is the arity of the function returned. In other words, this produces a binary operator.
Now imagine that, given the arity, jlambda produces a dummy lambda-list which it passes to the actual lambda macro, something like this:
(defun build-lambda-list (arity)
(assert (alexandria:non-negative-integer-p arity))
(loop for x below arity collect (gensym)))
(build-lambda-list 2)
==> (#:G15 #:G16)
The expansion of the above call to jlambda will look like this:
(lambda (#:G15 #:16)
(declare (ignore #:G15 #:16))
…body))
Let's say we need the jlambda macro to be able to receive the arity value as a Lisp form that evaluates to a non-negative integer (as opposed to receiving a non-negative integer directly) eg:
(jlambda (+ 1 1)
...body)
The form (+ 1 1) needs to be evaluated, then the result needs to be passed to build-lambda-list and that needs to be evaluated, and the result of that is inserted into the macro expansion.
(+ 1 1)
=> 2
(build-lambda-list 2)
=> (#:G17 #:18)
(jlambda (+ 1 1) ...body)
=> (lambda (#:G19 #:20)
(declare (ignore #:G19 #:20))
…body))
So here's a version of jlambda that works when the arity is provided as a number directly, but not when it's passed as a form to be evaluated:
(defun jlambda-helper (arity)
(let ((dummy-args (build-lambda-list arity)))
`(lambda ,dummy-args
(declare (ignore ,#dummy-args))
body)))
(defmacro jlambda (arity &body body)
(subst (car body) 'body (jlambda-helper arity)))
(jlambda 2 (print “hello”)) ==> #<anonymous-function>
(funcall *
'ignored-but-required-argument-a
'ignored-but-required-argument-b)
==> “hello”
“hello”
(jlambda (+ 1 1) (print “hello”)) ==> failed assertion in build-lambda-list, since it receives (+ 1 1) not 2
I could evaluate the (+ 1 1) using the sharp-dot read macro, like so:
(jlambda #.(+ 1 1) (print “hello”)) ==> #<anonymous-function>
But then the form cannot contain references to lexical variables, since they are not available when evaluating at read-time:
(let ((x 1))
;; Do other stuff with x, then:
(jlambda #.(+ x 1) (print “hello”))) ==> failure – variable x not bound
I could quote all body code that I pass to jlambda, define it as a function instead, and then eval the code that it returns:
(defun jlambda (arity &rest body)
(let ((dummy-args (build-lambda-list arity)))
`(lambda ,dummy-args
(declare (ignore ,#dummy-args))
,#body)))
(eval (jlambda (+ 1 1) `(print “hello”))) ==> #<anonymous-function>
But I can't use eval because, like sharp-dot, it throws out the lexical environment, which is no good.
So jlambda must be a macro, because I don't want the function body code evaluated until the proper context for it has been established by jlambda's expansion; however it must also be a function, because I want the first form (in this example, the arity form) evaluated before passing it to helper functions that generate the macro expansion. How do I overcome this Catch-22 situation?
EDIT
In response to #Sylwester 's question, here's an explanation of the context:
I'm writing something akin to an “esoteric programming language”, implemented as a DSL in Common Lisp. The idea (admittedly silly but potentially fun) is to force the programmer, as far as possible (I'm not sure how far yet!), to write exclusively in point-free style. To do this, I will do several things:
Use curry-compose-reader-macros to provide most of the functionality required to write in point-free style in CL
Enforce functions' arity – i.e. override CL's default behaviour that allows functions to be variadic
Instead of using a type system to determine when a function has been “fully applied” (like in Haskell), just manually specify a function's arity when defining it.
So I'll need a custom version of lambda for defining a function in this silly language, and – if I can't figure that out - a custom version of funcall and/or apply for invoking those functions. Ideally they'll just be skins over the normal CL versions that change the functionality slightly.
A function in this language will somehow have to keep track of its arity. However, for simplicity, I would like the procedure itself to still be a funcallable CL object, but would really like to avoid using the MetaObject Protocol, since it's even more confusing to me than macros.
A potentially simple solution would be to use a closure. Every function could simply close over the binding of a variable that stores its arity. When invoked, the arity value would determine the exact nature of the function application (i.e. full or partial application). If necessary, the closure could be “pandoric” in order to provide external access to the arity value; that could be achieved using plambda and with-pandoric from Let Over Lambda.
In general, functions in my language will behave like so (potentially buggy pseudocode, purely illustrative):
Let n be the number of arguments provided upon invocation of the function f of arity a.
If a = 0 and n != a, throw a “too many arguments” error;
Else if a != 0 and 0 < n < a, partially apply f to create a function g, whose arity is equal to a – n;
Else if n > a, throw a “too many arguments” error;
Else if n = a, fully apply the function to the arguments (or lack thereof).
The fact that the arity of g is equal to a – n is where the problem with jlambda would arise: g would need to be created like so:
(jlambda (- a n)
...body)
Which means that access to the lexical environment is a necessity.
This is a particularly tricky situation because there's no obvious way to create a function of a particular number of arguments at runtime. If there's no way to do that, then it's probably easiest to write a a function that takes an arity and another function, and wraps the function in a new function that requires that is provided the particular number of arguments:
(defun %jlambda (n function)
"Returns a function that accepts only N argument that calls the
provided FUNCTION with 0 arguments."
(lambda (&rest args)
(unless (eql n (length args))
(error "Wrong number of arguments."))
(funcall function)))
Once you have that, it's easy to write the macro around it that you'd like to be able to:
(defmacro jlambda (n &body body)
"Produces a function that takes exactly N arguments and and evalutes
the BODY."
`(%jlambda ,n (lambda () ,#body)))
And it behaves roughly the way you'd want it to, including letting the arity be something that isn't known at compile time.
CL-USER> (let ((a 10) (n 7))
(funcall (jlambda (- a n)
(print 'hello))
1 2 3))
HELLO
HELLO
CL-USER> (let ((a 10) (n 7))
(funcall (jlambda (- a n)
(print 'hello))
1 2))
; Evaluation aborted on #<SIMPLE-ERROR "Wrong number of arguments." {1004B95E63}>.
Now, you might be able to do something that invokes the compiler at runtime, possibly indirectly, using coerce, but that won't let the body of the function be able to refer to variables in the original lexical scope, though you would get the implementation's wrong number of arguments exception:
(defun %jlambda (n function)
(let ((arglist (loop for i below n collect (make-symbol (format nil "$~a" i)))))
(coerce `(lambda ,arglist
(declare (ignore ,#arglist))
(funcall ,function))
'function)))
(defmacro jlambda (n &body body)
`(%jlambda ,n (lambda () ,#body)))
This works in SBCL:
CL-USER> (let ((a 10) (n 7))
(funcall (jlambda (- a n)
(print 'hello))
1 2 3))
HELLO
CL-USER> (let ((a 10) (n 7))
(funcall (jlambda (- a n)
(print 'hello))
1 2))
; Evaluation aborted on #<SB-INT:SIMPLE-PROGRAM-ERROR "invalid number of arguments: ~S" {1005259923}>.
While this works in SBCL, it's not clear to me whether it's actually guaranteed to work. We're using coerce to compile a function that has a literal function object in it. I'm not sure whether that's portable or not.
NB: In your code you use strange quotes so that (print “hello”) doesn't actually print hello but the whatever the variable “hello” evaluates to, while (print "hello") does what one would expect.
My first question is why? Usually you know how many arguments you are taking compile time or at least you just make it multiple arity. Making an n arity function only gives you errors when passwd with wrong number of arguments as added feature with the drawback of using eval and friends.
It cannot be solved as a macro since you are mixing runtime with macro expansion time. Imagine this use:
(defun test (last-index)
(let ((x (1+ last-index)))
(jlambda x (print "hello"))))
The macro is expanded when this form is evaluated and the content replaced before the function is assigned to test. At this time x doesn't have any value whatsoever and sure enough the macro function only gets the symbols so that the result need to use this value. lambda is a special form so it again gets expanded right after the expansion of jlambda, also before any usage of the function.
There is nothing lexical happening since this happens before the program is running. It could happen before loading the file with compile-file and then if you load it will load all forms with the macros already expanded beforehand.
With compile you can make a function from data. It is probably as evil as eval is so you shouldn't be using it for common tasks, but they exist for a reason:
;; Macro just to prevent evaluation of the body
(defmacro jlambda (nexpr &rest body)
`(let ((dummy-args (build-lambda-list ,nexpr)))
(compile nil (list* 'lambda dummy-args ',body))))
So the expansion of the first example turns into this:
(defun test (last-index)
(let ((x (1+ last-index)))
(let ((dummy-args (build-lambda-list x)))
(compile nil (list* 'lambda dummy-args '((print "hello")))))))
This looks like it could work. Lets test it:
(defparameter *test* (test 10))
(disassemble *test*)
;Disassembly of function nil
;(CONST 0) = "hello"
;11 required arguments <!-- this looks right
;0 optional arguments
;No rest parameter
;No keyword parameters
;4 byte-code instructions:
;0 (const&push 0) ; "hello"
;1 (push-unbound 1)
;3 (calls1 142) ; print
;5 (skip&ret 12)
;nil
Possible variations
I've made a macro that takes a literal number and makes bound variables from a ... that can be used in the function.
If you are not using the arguments why not make a macro that does this:
(defmacro jlambda2 (&rest body)
`(lambda (&rest #:rest) ,#body))
The result takes any number of arguments and just ignores it:
(defparameter *test* (jlambda2 (print "hello")))
(disassemble *test*)
;Disassembly of function :lambda
;(CONST 0) = "hello"
;0 required arguments
;0 optional arguments
;Rest parameter <!-- takes any numer of arguments
;No keyword parameters
;4 byte-code instructions:
;0 (const&push 0) ; "hello"
;1 (push-unbound 1)
;3 (calls1 142) ; print
;5 (skip&ret 2)
;nil
(funcall *test* 1 2 3 4 5 6 7)
; ==> "hello" (prints "hello" as side effect)
EDIT
Now that I know what you are up to I have an answer for you. Your initial function does not need to be runtime dependent so all functions indeed have a fixed arity, so what we need to make is currying or partial application.
;; currying
(defmacro fixlam ((&rest args) &body body)
(let ((args (reverse args)))
(loop :for arg :in args
:for r := `(lambda (,arg) ,#body)
:then `(lambda (,arg) ,r)
:finally (return r))))
(fixlam (a b c) (+ a b c))
; ==> #<function :lambda (a) (lambda (b) (lambda (c) (+ a b c)))>
;; can apply multiple and returns partially applied when not enough
(defmacro fixlam ((&rest args) &body body)
`(let ((lam (lambda ,args ,#body)))
(labels ((chk (args)
(cond ((> (length args) ,(length args)) (error "too many args"))
((= (length args) ,(length args)) (apply lam args))
(t (lambda (&rest extra-args)
(chk (append args extra-args)))))))
(lambda (&rest args)
(chk args)))))
(fixlam () "hello") ; ==> #<function :lambda (&rest args) (chk args)>
;;Same but the zero argument functions are applied right away:
(defmacro fixlam ((&rest args) &body body)
`(let ((lam (lambda ,args ,#body)))
(labels ((chk (args)
(cond ((> (length args) ,(length args)) (error "too many args"))
((= (length args) ,(length args)) (apply lam args))
(t (lambda (&rest extra-args)
(chk (append args extra-args)))))))
(chk '()))))
(fixlam () "hello") ; ==> "hello"
If all you want is lambda functions that can be applied either partially or fully, I don't think you need to pass the amount of parameters explicitly. You could just do something like this (uses Alexandria):
(defmacro jlambda (arglist &body body)
(with-gensyms (rest %jlambda)
`(named-lambda ,%jlambda (&rest ,rest)
(cond ((= (length ,rest) ,(length arglist))
(apply (lambda ,arglist ,#body) ,rest))
((> (length ,rest) ,(length arglist))
(error "Too many arguments"))
(t (apply #'curry #',%jlambda ,rest))))))
CL-USER> (jlambda (x y) (format t "X: ~s, Y: ~s~%" x y))
#<FUNCTION (LABELS #:%JLAMBDA1046) {1003839D6B}>
CL-USER> (funcall * 10) ; Apply partially
#<CLOSURE (LAMBDA (&REST ALEXANDRIA.0.DEV::MORE) :IN CURRY) {10038732DB}>
CL-USER> (funcall * 20) ; Apply fully
X: 10, Y: 20
NIL
CL-USER> (funcall ** 100) ; Apply fully again
X: 10, Y: 100
NIL
CL-USER> (funcall *** 100 200) ; Try giving a total of 3 args
; Debugger entered on #<SIMPLE-ERROR "Too many arguments" {100392D7E3}>
Edit: Here's also a version that lets you specify the arity. Frankly, I don't see how this could possibly be useful though. If the user cannot refer to the arguments, and nothing is done with them automatically, then, well, nothing is done with them. They might as well not exist.
(defmacro jlambda (arity &body body)
(with-gensyms (rest %jlambda n)
`(let ((,n ,arity))
(named-lambda ,%jlambda (&rest ,rest)
(cond ((= (length ,rest) ,n)
,#body)
((> (length ,rest) ,n)
(error "Too many arguments"))
(t (apply #'curry #',%jlambda ,rest)))))))
CL-USER> (jlambda (+ 1 1) (print "hello"))
#<CLOSURE (LABELS #:%JLAMBDA1085) {1003B7913B}>
CL-USER> (funcall * 2)
#<CLOSURE (LAMBDA (&REST ALEXANDRIA.0.DEV::MORE) :IN CURRY) {1003B7F7FB}>
CL-USER> (funcall * 5)
"hello"
"hello"
Edit2: If I understood correctly, you might be looking for something like this (?):
(defvar *stack* (list))
(defun jlambda (arity function)
(lambda ()
(push (apply function (loop repeat arity collect (pop *stack*)))
*stack*)))
CL-USER> (push 1 *stack*)
(1)
CL-USER> (push 2 *stack*)
(2 1)
CL-USER> (push 3 *stack*)
(3 2 1)
CL-USER> (push 4 *stack*)
(4 3 2 1)
CL-USER> (funcall (jlambda 4 #'+)) ; take 4 arguments from the stack
(10) ; and apply #'+ to them
CL-USER> (push 10 *stack*)
(10 10)
CL-USER> (push 20 *stack*)
(20 10 10)
CL-USER> (push 30 *stack*)
(30 20 10 10)
CL-USER> (funcall (jlambda 3 [{reduce #'*} #'list])) ; pop 3 args from
(6000 10) ; stack, make a list
; of them and reduce
; it with #'*
Is it possible to use/implement tacit programming (also known as point-free programming) in Lisp? And in case the answer is yes, has it been done?
This style of programming is possible in CL in principle, but, being a Lisp-2, one has to add several #'s and funcalls. Also, in contrast to Haskell for example, functions are not curried in CL, and there is no implicit partial application. In general, I think that such a style would not be very idiomatic CL.
For example, you could define partial application and composition like this:
(defun partial (function &rest args)
(lambda (&rest args2) (apply function (append args args2))))
(defun comp (&rest functions)
(flet ((step (f g) (lambda (x) (funcall f (funcall g x)))))
(reduce #'step functions :initial-value #'identity)))
(Those are just quick examples I whipped up – they are not really tested or well thought-through for different use-cases.)
With those, something like map ((*2) . (+1)) xs in Haskell becomes:
CL-USER> (mapcar (comp (partial #'* 2) #'1+) '(1 2 3))
(4 6 8)
The sum example:
CL-USER> (defparameter *sum* (partial #'reduce #'+))
*SUM*
CL-USER> (funcall *sum* '(1 2 3))
6
(In this example, you could also set the function cell of a symbol instead of storing the function in the value cell, in order to get around the funcall.)
In Emacs Lisp, by the way, partial application is built-in as apply-partially.
In Qi/Shen, functions are curried, and implicit partial application (when functions are called with one argument) is supported:
(41-) (define comp F G -> (/. X (F (G X))))
comp
(42-) ((comp (* 2) (+ 1)) 1)
4
(43-) (map (comp (* 2) (+ 1)) [1 2 3])
[4 6 8]
There is also syntactic threading sugar in Clojure that gives a similar feeling of "pipelining":
user=> (-> 0 inc (* 2))
2
You could use something like (this is does a little more than -> in
Clojure):
(defmacro -> (obj &rest forms)
"Similar to the -> macro from clojure, but with a tweak: if there is
a $ symbol somewhere in the form, the object is not added as the
first argument to the form, but instead replaces the $ symbol."
(if forms
(if (consp (car forms))
(let* ((first-form (first forms))
(other-forms (rest forms))
(pos (position '$ first-form)))
(if pos
`(-> ,(append (subseq first-form 0 pos)
(list obj)
(subseq first-form (1+ pos)))
,#other-forms)
`(-> ,(list* (first first-form) obj (rest first-form))
,#other-forms)))
`(-> ,(list (car forms) obj)
,#(cdr forms)))
obj))
(you must be careful to also export the symbol $ from the package in
which you place -> - let's call that package tacit - and put
tacit in the use clause of any package where you plan to use ->, so -> and $ are inherited)
Examples of usage:
(-> "TEST"
string-downcase
reverse)
(-> "TEST"
reverse
(elt $ 1))
This is more like F#'s |> (and the shell pipe) than Haskell's ., but they
are pretty much the same thing (I prefer |>, but this is a matter of personal taste).
To see what -> is doing, just macroexpand the last example three times (in SLIME, this is accomplished by putting the cursor on the first ( in the example and typing C-c RET three times).
YES, it's possible and #danlei already explained very well. I am going to add up some examples from the book ANSI Common Lisp by Paul Graham, chapter 6.6 on function builders:
you can define a function builder like this:
(defun compose (&rest fns)
(destructuring-bind (fn1 . rest) (reverse fns)
#'(lambda (&rest args)
(reduce #'(lambda (v f) (funcall f v))
rest
:initial-value (apply fn1 args)))))
(defun curry (fn &rest args)
#'(lambda (&rest args2)
(apply fn (append args args2))))
and use it like this
(mapcar (compose #'list #'round #'sqrt)
'(4 9 16 25))
returns
((2) (3) (4) (5))
The compose function call:
(compose #'a #'b #'c)
is equlvalent to
#'(lambda (&rest args) (a (b (apply #'c args))))
This means compose can take any number of arguments, yeah.
Make a function which add 3 to argument:
(curry #'+ 3)
See more in the book.
Yes, this is possible in general with the right functions. For example, here is an example in Racket implementing sum from the Wikipedia page:
#lang racket
(define sum (curry foldr + 0))
Since procedures are not curried by default, it helps to use curry or write your functions in an explicitly curried style. You could abstract over this with a new define macro that uses currying.