Generating random clusters' centers with max distance - cluster-analysis

I have a sequential data (one instance per time) to be clustered into two classes. I want to use the sequential version of K-means (sequential K-means) for this task.
Upon randomly specifying the centers of the two clusters for the algorithm at the beginning, I want for the distance between them to be as max as possible (i.e., very away from each other) so the distribution of the the resulting two clusters will not be affected by the initial centers.
Is my thinking correct? if so, how can I do that?

Rather try to best estimate the true means. That is the optimum steategy.
If you just want to make them far apart, that can lead to badly assigned points inbetween.

Related

distance metrics for clustering non-normally distributed data

The dataset I want to cluster consists of ~1000 samples and 10 features, which have different scales and ranges (negative, positive, both). Using scipy.stats.normaltest() I found that none of the features are normally-distributed (all p-values < 1e-4, small enough to reject the null hypothesis that the data are taken from a normal distribution). But all of the distance measures that I'm aware of assume normally-distributed data (I was using Mahalanobis until I realized how non-uniform the data was). What distance measures would one use in this situation? Or is this where one simply has to normalize every feature and hope that that doesn't introduce bias?
Why do you think all distances would assume normal (which btw. is not the same as uniform) data?
Consider Euclidean distance. In many physical applications this distance makes perfect sense, because it is "as the crow flies". Manhattan distance makes a lot of sense when movement is constrained to two axes that cannot be used at the same time. These are completely appropriate for non-normal distributed data.

Selecting the K value for Kmeans clustering [duplicate]

This question already has answers here:
Cluster analysis in R: determine the optimal number of clusters
(8 answers)
Closed 3 years ago.
I am going to build a K-means clustering model for outlier detection. For that, I need to identify the best number of clusters needs to be selected.
For now, I have tried to do this using Elbow Method. I plotted the sum of squared error vs. the number of clusters(k) but, I got a graph like below which makes confusion to identify the elbow point.
I need to know, why do I get a graph like this and how do I identify the optimal number of clusters.
K-means is not suitable for outlier detection. This keeps popping up here all the time.
K-means is conceptualized for "pure" data, with no false points. All measurements are supposed to come from the data, and only vary by some Gaussian measurement error. Occasionally this may yield some more extreme values, but even these are real measurements, from the real clusters, and should be explained not removed.
K-means itself is known to not work well on noisy data where data points do not belong to the clusters
It tends to split large real clusters in two, and then points right in the middle of the real cluster will have a large distance to the k-means centers
It tends to put outliers into their own clusters (because that reduces SSQ), and then the actual outliers will have a small distance, even 0.
Rather use an actual outlier detection algorithm such as Local Outlier Factor, kNN, LOOP etc. instead that were conceptualized with noisy data in mind.
Remember that the Elbow Method doesn't just 'give' the best value of k, since the best value of k is up to interpretation.
The theory behind the Elbow Method is that we in tandem both want to minimize some error function (i.e. sum of squared errors) while also picking a low value of k.
The Elbow Method thus suggests that a good value of k would lie in a point on the plot that resembles an elbow. That is the error is small, but doesn't decrease drastically when k increases locally.
In your plot you could argue that both k=3 and k=6 resembles elbows. By picking k=3 you'd have picked a small k, and we see that k=4, and k=5 doesn't do much better in minimizing the error. Same goes with k=6.

Is there maximum number of noise/ outliers in DBSCAN algorithm?

I did clustering on spatial datasets using DBSCAN algorithm and generating a lot of noise 193000 of 250000 data. is that a reasonable amount?
Depends on your data and problem.
If I generate random coordinates, 100% noise would be appropriate because the data is random noise.
First, to address the question in your title. By making eps
very large, it is easy to get no noise points and all the points are
in one big cluster. By making eps very small, you can easily
make all points be noise points. In general, somewhere in between
is what you are looking for. Your job is to find a value that produces
a meaningful clustering. That is where the remark of
#Anony-Mousse comes into play.
Depends on your data and problem
As he suggested, if you have uniform random data, maybe all
noise is the best answer. If you have Gaussian random data,
maybe one big cluster with a few outliers is good. But this is
supposed to help you understand the structure of your data.
What happens as you change eps? From your current clustering
with many noise points, what happens as you gradually increase eps?
Does it gradually add a few noise points into the existing clusters?
Is there some place where two clusters get merged into one? Is there
someplace that there is a sudden change in the number of clusters?
Also, can you interpret the clusters in terms of your variables?
Perhaps the difference between two clusters is that in one all the
values of some variable are low and in another cluster they are high. Considering whatever problem you are trying to solve,
do the clusters divide the data into meaningful groups? Try to use
the clusterings to find meaning in your data.

Cluster assignment remapping

I have test classification datasets from UCI Machine Learning repository which are labelled.
I am stripping of the labels and using the data to benchmark a few clustering algorithm and then I am planning to use external validation methods. I will run the algorithm with different initial configurations, for say, 50 times and then take the mean value. For 50 iterations the algorithm labels the data points of one single cluster with different numbers. Because in each run the cluster labels can change, also because each iteration might have slightly different cluster assignments, how to somehow remap each of the clusters to one uniform numbering.
Primary idea is to remap by checking how many of the points in the class labels intersect the maximum in the actual labels and then making a remap based on that, but this can get incorrect remappings because when the classes will have more or less equal number of points, this will not work.
Another idea is to keep the labels while clustering, but make the clustering algorithm ignore it. This way all the cluster data will have the label tags. This is doable but I have already have a benchmarked cluster assignment data to be processed therefore I am trying to avoid modifying and re-benchmarking my implementation (which will take quite some time and cpu) of the cluster analysis algorithms and include the label tag to the vectors and then ignore it.
Is there any way that I can compute average accuracy from the cluster assignments I have right now?
EDIT:
The domain in which I am studying (metaheuristic clustering algorithms) I could not find a paper comparing these indexes. The paper which compares seems to be incorrect in their values. Can anyone point me to a paper where clustering results are compared using any of these indexes?
What do you do when the number of clusters doesn't agree?
Do not try to map clusters.
Instead, use the proper external validation measures for clustering, which do not require a 1:1 correspondence of clusters. There are plenty, for details see Wikipedia.

Clustering words into groups

This is a Homework question. I have a huge document full of words. My challenge is to classify these words into different groups/clusters that adequately represent the words. My strategy to deal with it is using the K-Means algorithm, which as you know takes the following steps.
Generate k random means for the entire group
Create K clusters by associating each word with the nearest mean
Compute centroid of each cluster, which becomes the new mean
Repeat Step 2 and Step 3 until a certain benchmark/convergence has been reached.
Theoretically, I kind of get it, but not quite. I think at each step, I have questions that correspond to it, these are:
How do I decide on k random means, technically I could say 5, but that may not necessarily be a good random number. So is this k purely a random number or is it actually driven by heuristics such as size of the dataset, number of words involved etc
How do you associate each word with the nearest mean? Theoretically I can conclude that each word is associated by its distance to the nearest mean, hence if there are 3 means, any word that belongs to a specific cluster is dependent on which mean it has the shortest distance to. However, how is this actually computed? Between two words "group", "textword" and assume a mean word "pencil", how do I create a similarity matrix.
How do you calculate the centroid?
When you repeat step 2 and step 3, you are assuming each previous cluster as a new data set?
Lots of questions, and I am obviously not clear. If there are any resources that I can read from, it would be great. Wikipedia did not suffice :(
As you don't know exact number of clusters - I'd suggest you to use a kind of hierarchical clustering:
Imagine that all your words just a points in non-euclidean space. Use Levenshtein distance to calculate distance between words (it works great, in case, if you want to detect clusters of lexicographically similar words)
Build minimum spanning tree which contains all of your words
Remove links, which have length greater than some threshold
Linked groups of words are clusters of similar words
Here is small illustration:
P.S. you can find many papers in web, where described clustering based on building of minimal spanning tree
P.P.S. If you want to detect clusters of semantically similar words, you need some algorithms of automatic thesaurus construction
That you have to choose "k" for k-means is one of the biggest drawbacks of k-means.
However, if you use the search function here, you will find a number of questions that deal with the known heuristical approaches to choosing k. Mostly by comparing the results of running the algorithm multiple times.
As for "nearest". K-means acutally does not use distances. Some people believe it uses euclidean, other say it is squared euclidean. Technically, what k-means is interested in, is the variance. It minimizes the overall variance, by assigning each object to the cluster such that the variance is minimized. Coincidentially, the sum of squared deviations - one objects contribution to the total variance - over all dimensions is exactly the definition of squared euclidean distance. And since the square root is monotone, you can also use euclidean distance instead.
Anyway, if you want to use k-means with words, you first need to represent the words as vectors where the squared euclidean distance is meaningful. I don't think this will be easy or maybe not even possible.
About the distance: In fact, Levenshtein (or edit) distance satisfies triangle inequality. It also satisfies the rest of the necessary properties to become a metric (not all distance functions are metric functions). Therefore you can implement a clustering algorithm using this metric function, and this is the function you could use to compute your similarity matrix S:
-> S_{i,j} = d(x_i, x_j) = S_{j,i} = d(x_j, x_i)
It's worth to mention that the Damerau-Levenshtein distance doesn't satisfy the triangle inequality, so be careful with this.
About the k-means algorithm: Yes, in the basic version you must define by hand the K parameter. And the rest of the algorithm is the same for a given metric.