Singleton registry class - matlab

I would like to create a singleton MATLAB class acting as a global registry. The registry should store objects (of a certain class derived from handle) addressed with unique names. I would like to access the properties of the stored classes conveniently without temporary variables, for example:
Registry.instance().addElement('name1', NewObject(...));
Registry.instance().get('name1').Value
Registry.instance().get('name2').Value = 1;
Reading out properties of the returned class can be circumvented by removing the () from instance:
>> Equipment.instance.get('name1').Value
However, it does not seem easy to use assignments because as noted in the comments, dot-indexing can't be used directly on the output of a function without assigning to an intermediate variable.
What is the proper way to implement and use such a "singleton registry" in MATLAB?
It should be noted that the singleton class contains some logic which is called when adding elements to the list, logic to properly destroy the objects in the right order and other methods which iterate through the object list. For that reason, a "normal" containers.Map cannot be used.

This might be what you're looking for:
classdef (Abstract) Registry % < handle <-- optional
methods (Access = public, Static = true)
function addElement(elementName, element)
Registry.accessRegistry('set', elementName, element );
end
function element = get(elementName)
element = Registry.accessRegistry('get', elementName);
end
function reset()
Registry.accessRegistry('reset');
end
end
methods (Access = private, Static = true)
function varargout = accessRegistry(action, fieldName, fieldValue)
% throws MATLAB:Containers:Map:NoKey
persistent elem;
%% Initialize registry:
if ~isa(elem, 'containers.Map') % meaning elem == []
elem = containers.Map;
end
%% Process action:
switch action
case 'set'
elem(fieldName) = fieldValue;
case 'get'
varargout{1} = elem(fieldName);
case 'reset'
elem = containers.Map;
end
end
end
end
Since MATLAB doesn't support static properties, one must resort to various workarounds, possibly involving methods with persistent variables, as is the case in my answer.
Here's a usage example of the above:
Registry.addElement('name1', gobjects(1));
Registry.addElement('name2', cell(1) ); % assign heterogeneous types
Registry.get('name1')
ans =
GraphicsPlaceholder with no properties.
Registry.get('name1').get % dot-access the output w/o intermediate assignment
struct with no fields.
Registry.get('name2'){1} % {}-access the output w/o intermediate assignment
ans =
[]
Registry.get('name3') % request an invalid value
Error using containers.Map/subsref
The specified key is not present in this container.
Error in Registry/accessRegistry (line 31)
varargout{1} = elem(fieldName);
Error in Registry.get (line 10)
element = Registry.accessRegistry('get', elementName);

Related

Program in same OOP style as App Designer

I like the OO programming style that matlabs App Designer uses (or at least the way I'm using it). Now I'm wondering if I can use the same style in my "normal" matlab class.
What I have now:
classdef myClass
properties
myVar;
end
methods
function Main(obj)
obj.myVar = "a";
obj = DoSomething(obj);
disp(obj.myVar) % outputs "c"
end
function obj = DoSomething(obj)
if(obj.myVar == "a")
obj.myVar="c";
else
obj.myVar = "b";
end
end
end
end
Which can be called externally using:
myClassInst = myClass;
myClassInst.Main()
I would like to get rid of all the "obj = " in the classdef, as is possible in App Designer. So something that would look like this:
classdef myClass
properties
myVar;
end
methods
function Main(obj)
obj.myVar = "a";
DoSomething(obj); % Just call the function without "obj = "
disp(obj.myVar) % outputs "a" because I didn't overwrite obj
end
function DoSomething(obj)
if(obj.myVar == "a")
obj.myVar="c";
else
obj.myVar = "b";
end
end
end
end
The equivalent of this seems to work in App Designer. So it appears you can modify variables in a class (instance?) in App Designer, while also being able to access the modified variable without explicitly overwriting your old class instance.
I noticed App Designer has all methods an properties set to (Access = private), though I'm not sure that has anything to do with it. Of course if I set everything to private, then I can't access the Main() method from outside anymore.
So my question is, how can I program in "normal" matlab, the same way as is possible in App Designer?
EDIT:
The following works in App Designer (I left out the methods/properties for the GUI elements):
classdef tmp < matlab.apps.AppBase
properties (Access = private)
myVar; % Description
end
methods (Access = private)
function doSomething(app)
if app.myVar == "a"
app.myVar = "c";
else
app.myVar = "b";
end
end
end
% Callbacks that handle component events
methods (Access = private)
% Code that executes after component creation
function startupFcn(app)
app.myVar = "a";
doSomething(app);
disp(app.myVar); % outputs "c"
end
end
end
You definitely can! All you have to do is inherit from the handle class, as opposed to a value class which is the default for matlab. You can also define private and public methods as in other languages.
The only thing you have to do is:
classdef myclass < handle % this is how you inherit from base class
properties
public_property
end
properties (Access=private)
private_property
end
methods
function obj = myclass() % class constructor
...
end
function public_function()
...
end
end
methods (Access=private)
function private_function()
...
end
end
end
Now every time you pass an object of this class to a function, you are not passing it by value, you are passing by reference (as you might be used to from python) and modifying it's properties modifies them also in the original object.
You need to inherit (< at the top of the class) from a handle class
classdef myClass < handle
properties
var
end
methods
function obj = myClass( varargin )
% Constructor function, called automatically when object is created
end
function someFunction( obj )
obj.randomizeVar(); % Equivalent to randomizeVar( obj );
end
function randomizeVar( obj )
obj.var = rand();
end
end
end
See the documentation for the difference between a "handle" and "value" class:
A value class constructor returns an object that is associated with the variable to which it is assigned. If you reassign this variable, MATLABĀ® creates an independent copy of the original object. If you pass this variable to a function to modify it, the function must return the modified object as an output argument. For information on value-class behavior, see Avoid Unnecessary Copies of Data.
A handle class constructor returns a handle object that is a reference to the object created. You can assign the handle object to multiple variables or pass it to functions without causing MATLAB to make a copy of the original object. A function that modifies a handle object passed as an input argument does not need to return the object.
Moreover, if you edit matlab.apps.AppBase, the class which you app designer code inherits, you can see that the first line is
classdef AppBase < handle
So you are literally doing the same thing, without the AppBase middle-man.

Matlab coder & dynamic field references

I'm trying to conjure up a little parser that reads a .txt file containing parameters for an algorithm so i don't have to recompile it everytime i change a parameter. The application is C code generated from .m via coder, which unfortunately prohibits me from using a lot of handy matlab gimmicks.
Here's my code so far:
% read textfile
string = readfile(filepath);
% do fancy rearranging
linebreaks = zeros(size(string));
equals = zeros(size(string));
% find delimiters
for n=1:size(string,2)
if strcmp(string(n),char(10))
linebreaks(n) = 1;
elseif strcmp(string(n), '=')
equals(n) = 1;
end
end
% write first key-value pair
idx_s = find(linebreaks);idx_s = [idx_s length(string)];
idx_e = find(equals);
key = string(1:idx_e(1)-1);
value = str2double(string(idx_e(1)+1:idx_s(1)-1));
parameters.(key) = value;
% find number of parameters
count = length(idx_s);
% write remaining key-value pairs
for n=2:count
key = string(idx_s(n-1)+1:idx_e(n)-1);
value = str2double(string(idx_e(n)+1:idx_s(n)-1));
parameters.(key) = value;
end
The problem is that seemingly coder does not support dynamic fieldnames for structures like parameters.(key) = value.
I'm a bit at a loss as to how else i am supposed to come up with a parameter struct that holds all my key-value pairs without hardcoding it. It would somewhat (though not completely) defeat the purpose if the names of keys were not dynamically linked to the parameter file (more manual work if parameters get added/deleted, etc.). If anybody has an idea how to work around this, i'd be very grateful.
As you say, dynamic fieldnames for structures aren't allowed in MATLAB code to be used by Coder. I've faced situations much like yours before, and here's how I handled it.
First, we can list some nice tools that are allowed in Coder. We're allowed to have classes (value or handle), which can be quite handy. Also, we're allowed to have variable sized data if we use coder.varsize to specifically designate it. We also can use string values in switch statements if we like. However, we cannot use coder.varsize for properties in a class, but you can have varsized persistent variables if you like.
What I'd do in your case is create a handle class for storing and retrieving the values. The following example is pretty basic, but will work and could be expanded. If a persistent variable were used in a method, you could even create a varsized allocated storage for the data, but in my example, it's a property and has been limited in the number of values it can store.
classdef keyval < handle %# codegen
%KEYVAL A key and value class designed for Coder
% Stores an arbitrary number of keys and values.
properties (SetAccess = private)
numvals = 0
end
properties (Access = private)
intdata
end
properties (Constant)
maxvals = 100;
maxkeylength = 30;
end
methods
function obj = keyval
%KEYVAL Constructor for keyval class
obj.intdata = repmat(struct('key', char(zeros(1, obj.maxkeylength)), 'val', 0), 1, obj.maxvals);
end
function result = put(obj, key, value)
%PUT Adds a key and value pair into storage
% Result is 0 if successful, 1 on error
result = 0;
if obj.numvals >= obj.maxvals
result = 1;
return;
end
obj.numvals = obj.numvals + 1;
tempstr = char(zeros(1,obj.maxkeylength));
tempstr(1,1:min(end,numel(key))) = key(1:min(end, obj.maxkeylength));
obj.intdata(obj.numvals).key = tempstr;
obj.intdata(obj.numvals).value = value;
end
function keystring = getkeyatindex(obj, index)
%GETKEYATINDEX Get a key name at an index
keystring = deblank(obj.intdata(index).key);
end
function value = getvalueforkey(obj, keyname)
%GETVALUEFORKEY Gets a value associated with a key.
% Returns NaN if not found
value = NaN;
for i=1:obj.numvals
if strcmpi(keyname, deblank(obj.intdata(i).key))
value = obj.intdata(i).value;
end
end
end
end
end
This class implements a simple key/value addition as well as lookup. There are a few things to note about it. First, it's very careful in the assignments to make sure we don't overrun the overall storage. Second, it uses deblank to clear out the trailing zeros that are necessary in the string storage. In this situation, it's not permitted for the strings in the structure to be of different length, so when we put a key string in there, it needs to be exactly the same length with trailing nulls. Deblank cleans this up for the calling function.
The constant properties allocate the total amount of space we're allowed in the storage array. These can be increased, obviously, but not at runtime.
At the MATLAB command prompt, using this class looks like:
>> obj = keyval
obj =
keyval with properties:
numvals: 0
>> obj.put('SomeKeyName', 1.23456)
ans =
0
>> obj
obj =
keyval with properties:
numvals: 1
>> obj.put('AnotherKeyName', 34567)
ans =
0
>> obj
obj =
keyval with properties:
numvals: 2
>> obj.getvalueforkey('SomeKeyName')
ans =
1.2346
>> obj.getkeyatindex(2)
ans =
AnotherKeyName
>> obj.getvalueforkey(obj.getkeyatindex(2))
ans =
34567
If a totally variable storage area is desired, the use of persistent variables with coder.varsize would work, but that will limit the use of this class to a single instance. Persistent variables are nice, but you only get one of them ever. As written, you can use this class in many different places in your program for different storage. If you use a persistent variable, you may only use it once.
If you know some of the key names and are later using them to determine functionality, remember that you can switch on strings in MATLAB, and this works in Coder.

Calling class object from a function without insert it to the function in MATLAB

We have this code in 'Reconstruction the subclass object from a saved struct' from MATLAB OOP documentation.
classdef MySuper
% Superclass definition
properties
X
Y
end
methods
function S = saveobj(obj)
% Save property values in struct
% Return struct for save function to write to MAT-file
S.PointX = obj.X;
S.PointY = obj.Y;
end
function obj = reload(obj,S)
% Method used to assign values from struct to properties
% Called by loadobj and subclass
obj.X = S.PointX;
obj.Y = S.PointY;
end
end
methods (Static)
function obj = loadobj(S)
% Constructs a MySuper object
% loadobj used when a superclass object is saved directly
% Calls reload to assign property values retrived from struct
% loadobj must be Static so it can be called without object
obj = MySuper;
obj = reload(obj,S);
end
end
end
I have a question about obj = MySuper. What is purpose of this line? How we can call MySuper object from this function without insert any object to loadobj function?
You first question is: What is the purpose of the obj = MySuper; line?
The answer is that the obj = MySuper; line initiates the variable obj as an element of the class MySuper. Non-static functions in a class will only run if the first input parameter is an instance of the class, so if obj is not initiated as a MySuper-object, then matlab will look for other functions called reload to run, and if none is found give you an error.
For your second question, I am not 100% sure what you mean. But I hope one of the following points will answer your question:
If you want to make a function that relates to a class, but not to a specific instance of the class, you can make a static function, these can take any input (also (if you want it that way) no input at all) - that is they don't need to have a first input parameter of the specific class.
To run a static function, use the class name followed by a dot and then the function name, so here you would type MySuper.loadobj(S) to run the function with the parameter S.
I would suggest that you try this out with the given example to better get to know the way oop works in matlab, you may for example try:
S.PointX = 1;
S.PointY = 2;
obj = MySuper.loadobj(S)
I hope this answers your questions.

MATLAB CLASSES getter and setters

I come from a Java background. I am having issues with classes in Matlab particularly getters and setters. getting a message saying conflict between handle and value class I'm a little lost with what to do so any help for lack of a better word will be helpful.
classdef Person
properties(Access = private)
name;
age;
end
methods
% class constructor
function obj = Person(age,name)
obj.age = age;
obj.name = name;
end
%getters
function name = get.name(obj)
end
function age = get.age(obj)
end
%setters
function value = set.name(obj,name)
end
function value = set.age(obj,age)
end
end
end
Implementation
Since your class is currently a subclass of the default Value class, your setters need to return the modified object:
function obj = set.name(obj,name)
end
function obj = set.age(obj,age)
end
From the documention: "If you pass [a value class] to a function, the function must return the modified object." And in particular: "In value classes, methods ... that modify the object must return a modified object to copy over the existing object variable".
Handle classes (classdef Person < handle) do not need to return the modified object (like returning void):
function [] = set.name(obj,name)
end
function [] = set.age(obj,age)
end
Value vs. Handle
Going a bit deeper, the difference between a Value class and a Handle class lies mostly in assignment:
Assigning a Value class instance to a variable creates a copy of that class.
Assigning a Handle class instance to a variable create a reference (alias) to that instance.
The Mathworks has a good rundown on this topic.
To paraphrase their illustration, the behavior of a Value class is
% p is an instance of Polynomial
p = Polynomial();
% p2 is also an instance of Polynomial with p's state at assignment
p2 = p;
and of a Handle class is
% db is an instance of Database
db = Database();
% db2 is a reference to the db instance
db2 = db;
Quick'n Dirty from the Java perspective:
- "handle" classes are what your mind is set to. proper object instances with pointers to them. use them.
- "value" classes are always returning a full clone of whatever object (which has been modified by what you just did, e.g. setting a name).
the reason they have both in Matlab is that in Matlab you would expect the "value" behaviour natively. Imagine you have a matrix A = [1 2; 3 4], then assign that via B = A. if you now set B(1) = -1 you'd hope that A(1) is still 1, right? this is because matlab keeps track of "copies" and truly creates them as you modify different variables initially set to the same matrix. in OOP you'd have A(1)=-1 now as everythings an object reference.
furthermore, "native" matlab routines dont have a "this/self/me" variable that contains the instance reference to access from within functions. instead, the convention is that the class instance will be prepended to the function's argument list.
so for a function call myclass.mymethod(arg1,arg1), the declaration must be
function mymethod(this, arg1, arg2)
% Note that the name you choose for "this" is arbitrary!
end
mind you, this is the java-perspective (and also my favourite one), the above function call is equivalent to mymethod(myclass,arg1,arg1). this is more native to matlab-style, but somehow makes it harder to see you're calling an objects method.
now, regarding setters/getters: for handle classes, everything feels java-ish now:
classdef MyClass < handle
properties
MyProp;
end
methods
function set.MyProp(this, value) %Note: setMyProp is also valid!
... % do checks etc, trigger calls,
this.MyProp = value;
end
function value = get.MyProp(this)
... % notify, update, triggers etc
value = this.MyProp;
end
end
Of course it goes without saying that you dont need to define a getter if you just want to return the value, i.e. myclassinstance.MyProp will work without any just as well.
Finally, getters/setters for value classes are something that [never encountered me/i never needed] in my 7 years of matlab oop, so my advise would be to go with handle classes and enjoy happy matlab coding :-)
otherwise, the above explanation & official matlab docs is doing the job for value class getter/setters.

Sub-struct with dependent fields

In Matlab, I would like a data structure that looks like so:
DataStruct
.model
.Q
.Qchol
.
.
.system
.
.
The structure may well be a class, although I don't really need all the other functionality that goes with oop.
But I require
If Q is assigned something, then automatically Qchol = cholcov(Q).
If Qchol is assigned something, then automatically Q = Qchol' * Qchol.
Meanwhile, both Q and Qchol are stored for fast read-access
And Q and Qchol are writable through simple assignment, e.g.: DS1.mod.Q = value
I know I can make model a class, and have set/get methods for Q and Qchol. However, this really seems like an overkill for just two matrices (plus maybe some more fields). Also Matlab warns me that I should not access other properties during in a set method.
So: What is the best way to have such data structures, preferably without warnings?
You basically want assignment (DS1.mod.Q = value) to have side-effects, which inevitably implies a setter, and hence a class. You should either drop this requirement, or write a class.
If you wish to avoid definition of properties in the class declaration, you could use Dynamic Properties, which allows you to add properties at runtime (although with some telltale syntax addprop()).
EDIT
Patric, the problem goes deeper then just M-lint. Consider the following class:
classdef cantInstantiateMe < handle
properties
x
minus_x
end
methods
function obj = cantInstantiateMe(x)
obj.x = x; % <-- this calls set.x(), which calls set.minus_x(), which calls set.x(), ...
obj.minus_x = -x;
end
function set.x(obj, value)
obj.x = value;
obj.minus_x = -value; % <-- this gives an M-Lint warning
end
function set.minus_x(obj, value)
obj.minus_x = value;
obj.x = -value;
end
end
end
This class cannot be instantiated, because each setter calls the other setter (this is not Matlab-specific). Trying to instantiate on my machine gives:
??? Maximum recursion limit of 500 reached. Use set(0,'RecursionLimit',N)
to change the limit. Be aware that exceeding your available stack space can
crash MATLAB and/or your computer.
At this point I think you have two options:
Make either Q or Qchol a dependent property. This will come at the cost of re-calculating the dependent property each time you read-access it.
Use some private shadow properties e.g. shadow_Q and shadow_Qchol which will be set when the setter for the public property is called, and returned when their getter is called. Similar to:
function set.x(obj, value)
obj.shadow_x = value;
obj.shadow_minus_x = -value;
end
function value = get.x(obj)
value = obj.shadow_x;
end
Note the I did not test this properly, so I don't know all implications in Matlab. In other languages I'm familiar with, this should work fine.
Regarding the warning - my approach is that it is safe to disable the warning, as long as you really know what you are doing.
As suggested by #bavaza, one way to implement this is to use a dependent property with corresponding shadow private properties.
Below is the code implementing the inner data structure (inspired by this post). You need to use composition to make an instance of this class a property of the outer object:
classdef Model < handle
properties (Dependent)
Q
Qchol
end
properties (Access = private)
Q_
Qchol_
end
methods
function obj = Model()
end
function val = get.Q(obj)
val = obj.Q_;
end
function val = get.Qchol(obj)
val = obj.Qchol_;
end
function set.Q(obj, val)
obj.Q_ = val;
obj.Qchol_ = cholcov(val);
end
function set.Qchol(obj, val)
obj.Qchol_ = val;
obj.Q_ = val'*val;
end
end
end
Setting one value using the exposed dependent properties affects both underlying variables:
>> m = Model
m =
Model with properties:
Q: []
Qchol: []
>> m.Qchol = rand(3)
m =
Model with properties:
Q: [3x3 double]
Qchol: [3x3 double]