Implementing a high-scale scheduler on a database - postgresql

We have a Postgres DB with a table of tens of millions of rows.
We also have a scheduler (app code) that runs on those rows and querying for specific assets. Usually what we need is 30days old items there.
We started to scale, and the scheduler is very slow.
What is the best approach to scale with maintaining a good performance? Using a different DB? Redis? ES? Partitioning the Postgres?
Thanks!

Usually what we need is 30days old items there.
That's the part of your question that's actually relevant. Postgresql, when used appropriately, should have absolutely no trouble performing a simple WHERE query with tens of millions of rows. The cost of index lookups grows logarithmically.
To take a stab in the dark: If you are performing date calculations for every row in your WHERE statement, performance will indeed be abysmal. For example:
SELECT * FROM my_data WHERE AGE(CREATED_AT) > INTERVAL '30 days';
...is a rather bad idea. Instead, calculate the date cutoff once, and statically use it in the comparison.
If your query is really more complicated, you could also look into expression indices. It's overkill for the example above, and it adds some overhead to all data-modifying operations, but would make a query as the one above perform as well as the static variant.
In any case: EXPLAIN SELECT ... is your friend, and posting its output will make you even more friends here.

Related

Run vacuum by schedule

I'm using Postgres version 9.6
Most of my tables are for queries, update, insert.
Most of them around 200K-700K.
There are bigger (millions) and smaller.
Is that a good idea to perform vacuum (and analyze?) operation once a day? once a week? regardless if there is an autovacuum..
Advantages vs disadvantages?
Autovacuum is done when needed and it only creates statistics that are used when planning a query.
Basically you never need to do this manually, unless you have made vast changes to a table (filled it with data for example), and want to use it in another query within a few milliseconds. In that scenario, old statistics will result in the query planner coming up with a very bad query plan and will lead to a significantly slower query.
What you might want to do once per day / per week, or whatever, is to cluster tables, recreate degraded indexes, on tables that were modified a lot. Research these topics more to decide if / when / how to do it.

Getting Over to Someone Why Views Can't Be Used as a Tables

For some reason I'm having a hard time getting over to some people that using a view in Postgres as you would use a table, is a bad idea.
As some background, there are a number of tables containing completely static data that is updated every few months via a batch import into different tables by date - table_201603 or table_201607. A view has then been created called 'table' which clients then use which is just a 'SELECT * FROM' of the table. When an updated batch of data is put into a new table the view is then updated to point at the new table. This means an in-place rename of the table does not need to take place that might mean downtime. This is in a version of Postgres before 9.3 where materialized views came in, just to clarify. These tables generally have about 100 million rows in them.
This is understandably leading to some confusing results when people are querying these views with very inconsistent query times. Sometimes queries are taking seconds, other times 20 or 30 milliseconds.
Additional: This is geospatial data, so they're doing geospatial queries on a view.
I know what many of the pitfalls here are - views are created on-the-fly like a sub-query, you're very much at the whim of the query planner as to what predicates get brought down and how long results are cached as results aren't physically stored as tables - but can anyone see anything else and suggest a better way of doing this? I can imagine this would be a reasonably common scenario so it might help others.
Thanks,
In general, this reminds me a use case for synonym. However, there are no synonyms in Postgres and they recommend using Views and or separation by schema
https://www.postgresql.org/message-id/kon2r2$mo6$1#ger.gmane.org

Postgres partitioning?

My software runs a cronjob every 30 minutes, which pulls data from Google Analytics / Social networks and inserts the results into a Postgres DB.
The data looks like this:
url text NOT NULL,
rangeStart timestamp NOT NULL,
rangeEnd timestamp NOT NULL,
createdAt timestamp DEFAULT now() NOT NULL,
...
(various integer columns)
Since one query returns 10 000+ items, it's obviously not a good idea to store this data in a single table. At this rate, the cronjob will generate about 480 000 records a day and about 14.5 million a month.
I think the solution would be using several tables, for example I could use a specific table to store data generated in a given month: stats_2015_09, stats_2015_10, stats_2015_11 etc.
I know Postgres supports table partitioning. However, I'm new to this concept, so I'm not sure what's the best way to do this. Do I need partitioning in this case, or should I just create these tables manually? Or maybe there is a better solution?
The data will be queried later in various ways, and those queries are expected to run fast.
EDIT:
If I end up with 12-14 tables, each storing 10-20 millions rows, Postgres should be still able to run select statements quickly, right? Inserts don't have to be super fast.
Partitioning is a good idea under various circumstances. Two that come to mind are:
Your queries have a WHERE clause that can be readily mapped onto one or a handful of partitions.
You want a speedy way to delete historical data (dropping a partition is faster than deleting records).
Without knowledge of the types of queries that you want to run, it is difficult to say if partitioning is a good idea.
I think I can say that splitting the data into different tables is a bad idea because it is a maintenance nightmare:
You can't have foreign key references into the table.
Queries spanning multiple tables are cumbersome, so simple questions are hard to answer.
Maintaining tables becomes a nightmare (adding/removing a column).
Permissions have to be carefully maintained, if you have users with different roles.
In any case, the place to start is with Postgres's documentation on partitioning, which is here. I should note that Postgres's implementation is a bit more awkward than in other databases, so you might want to review the documentation for MySQL or SQL Server to get an idea of what it is doing.
Firstly, I would like to challenge the premise of your question:
Since one query returns 10 000+ items, it's obviously not a good idea to store this data in a single table.
As far as I know, there is no fundamental reason why the database would not cope fine with a single table of many millions of rows. At the extreme, if you created a table with no indexes, and simply appended rows to it, Postgres could simply carry on writing these rows to disk until you ran out of storage space. (There may be other limits internally, I'm not sure; but if so, they're big.)
The problems only come when you try to do something with that data, and the exact problems - and therefore exact solutions - depend on what you do.
If you want to regularly delete all rows which were inserted more than a fixed timescale ago, you could partition the data on the createdAt column. The DELETE would then become a very efficient DROP TABLE, and all INSERTs would be routed through a trigger to the "current" partition (or could even by-pass it if your import script was aware of the partition naming scheme). SELECTs, however, would probably not be able to specify a range of createAt values in their WHERE clause, and would thus need to query all partitions and combine the results. The more partitions you keep around at a time, the less efficient this would be.
Alternatively, you might examine the workload on the table and see that all queries either already do, or easily can, explicitly state a rangeStart value. In that case, you could partition on rangeStart, and the query planner would be able to eliminate all but one or a few partitions when planning each SELECT query. INSERTs would need to be routed through a trigger to the appropriate table, and maintenance operations (such as deleting old data that is no longer needed) would be much less efficient.
Or perhaps you know that once rangeEnd becomes "too old" you will no longer need the data, and can get both benefits: partition by rangeEnd, ensure all your SELECT queries explicitly mention rangeEnd, and drop partitions containing data you are no longer interested in.
To borrow Linus Torvald's terminology from git, the "plumbing" for partitioning is built into Postgres in the form of table inheritance, as documented here, but there is little in the way of "porcelain" other than examples in the manual. However, there is a very good extension called pg_partman which provides functions for managing partition sets based on either IDs or date ranges; it's well worth reading through the documentation to understand the different modes of operation. In my case, none quite matched, but forking that extension was significantly easier than writing everything from scratch.
Remember that partitioning does not come free, and if there is no obvious candidate for a column to partition by based on the kind of considerations above, you may actually be better off leaving the data in one table, and considering other optimisation strategies. For instance, partial indexes (CREATE INDEX ... WHERE) might be able to handle the most commonly queried subset of rows; perhaps combined with "covering indexes", where Postgres can return the query results directly from the index without reference to the main table structure ("index-only scans").

IBMDB2 select query for millions of data

i am new at db2 i want to select around 2 million data with single query like that
which will select and display first 5000 data and in back process it will select other 5000 data and keep on same till end of the all data help me out with this how to write query or using function
Sounds like you want what's known as blocking. However, this isn't actually handled (not the way you're thinking of) at the database level - it's handled at the application level. You'd need to specify your platform and programming language for us to help there. Although if you're expecting somebody to actually read 2 million rows, it's going to take a while... At one row a second, that's 23 straight days.
The reason that SQL doesn't really perform this 'natively' is that it's (sort of) less efficient. Also, SQL is (by design) set up to operate over the entire set of data, both conceptually and syntactically.
You can use one of the new features, that incorporates paging from Oracle or MySQL: https://www.ibm.com/developerworks/mydeveloperworks/blogs/SQLTips4DB2LUW/entry/limit_offset?lang=en
At the same time, you can influence the optimizer by indicating OPTIMIZED FOR n ROWS, and FETCH FIRST n ROWS ONLY. If you are going to read only, it is better to specify this clause in the query "FOR READ ONLY", this will increase the concurrency, and the cursor will not be update-able. Also, assign a good isolation level, for this case you could eventually use "uncommitted read" (with UR). A Previous Lock table will be good.
Do not forget the common practices like: index or cluster index, retrieve only the necessary columns, etc. and always analyze the access plan via the Explain facility.

A question about indexes regarding to the gain of inserts & updates in database

I’m having a question about the fine line between the gain of an index to a table there is growing steadily in size every month and the gain of queries with an index.
The situation is, that I’ve two tables, Table1 and Table2. Each table grows slowly but regularly each month (with about 100 new rows for Table1 and a couple of rows for Table2).
My concrete question is whether to have an index or to drop it. I’ve made some measurement that an covering index on Table2 improve my SELECT queries and some rather much but again, I’ve to consider the pros and cons but having a really hard time to decide.
For Table1 it might not be necessary to have an index because the SELECT queries there is not that common.
I would appreciate any suggestion, tips or just good advice to what is a good solution.
By the way, I’m using IBM DB2 version 9.7 as my Database system
Sincerely
Mestika
Any additional index will make your inserts slower and your queries faster.
To take a smart decision, you will have to measure exactly by how much, with the amount of data that you expect to see. If you have multiple clients accessing the database at the same time, it may make sense to write a small multithreaded application that simulates the maximum load, both for inserts and for queries.
Your results will depend on the nature of your data and on the hardware that you are running. If you want to know the best answer for your usecase, there is no way around testin accurately yourself with your data and your hardware.
Then you will have to ask yourself:
Which query performance do I need?
If the query performance is good enough without the index anyway, easy: Don't add the index!
Which insert performance do I need?
Can it drop below the needed limit with the additional index? If not, easy: Add the index!
If you discover that you absolutely need the index for query performance and you can't get the required insert performance with the index, you may need to buy better hardware. Solid state discs can do wonders for database servers and they are getting affordable.
If your system is running fine for everyone anyway, worry less, let it run as is.