Spark typed aggregation throws exception? [duplicate] - scala

The common problems when building and deploying Spark applications are:
java.lang.ClassNotFoundException.
object x is not a member of package y compilation errors.
java.lang.NoSuchMethodError
How these can be resolved?

Apache Spark's classpath is built dynamically (to accommodate per-application user code) which makes it vulnerable to such issues. #user7337271's answer is correct, but there are some more concerns, depending on the cluster manager ("master") you're using.
First, a Spark application consists of these components (each one is a separate JVM, therefore potentially contains different classes in its classpath):
Driver: that's your application creating a SparkSession (or SparkContext) and connecting to a cluster manager to perform the actual work
Cluster Manager: serves as an "entry point" to the cluster, in charge of allocating executors for each application. There are several different types supported in Spark: standalone, YARN and Mesos, which we'll describe bellow.
Executors: these are the processes on the cluster nodes, performing the actual work (running Spark tasks)
The relationsip between these is described in this diagram from Apache Spark's cluster mode overview:
Now - which classes should reside in each of these components?
This can be answered by the following diagram:
Let's parse that slowly:
Spark Code are Spark's libraries. They should exist in ALL three components as they include the glue that let's Spark perform the communication between them. By the way - Spark authors made a design decision to include code for ALL components in ALL components (e.g. to include code that should only run in Executor in driver too) to simplify this - so Spark's "fat jar" (in versions up to 1.6) or "archive" (in 2.0, details bellow) contain the necessary code for all components and should be available in all of them.
Driver-Only Code this is user code that does not include anything that should be used on Executors, i.e. code that isn't used in any transformations on the RDD / DataFrame / Dataset. This does not necessarily have to be separated from the distributed user code, but it can be.
Distributed Code this is user code that is compiled with driver code, but also has to be executed on the Executors - everything the actual transformations use must be included in this jar(s).
Now that we got that straight, how do we get the classes to load correctly in each component, and what rules should they follow?
Spark Code: as previous answers state, you must use the same Scala and Spark versions in all components.
1.1 In Standalone mode, there's a "pre-existing" Spark installation to which applications (drivers) can connect. That means that all drivers must use that same Spark version running on the master and executors.
1.2 In YARN / Mesos, each application can use a different Spark version, but all components of the same application must use the same one. That means that if you used version X to compile and package your driver application, you should provide the same version when starting the SparkSession (e.g. via spark.yarn.archive or spark.yarn.jars parameters when using YARN). The jars / archive you provide should include all Spark dependencies (including transitive dependencies), and it will be shipped by the cluster manager to each executor when the application starts.
Driver Code: that's entirely up to - driver code can be shipped as a bunch of jars or a "fat jar", as long as it includes all Spark dependencies + all user code
Distributed Code: in addition to being present on the Driver, this code must be shipped to executors (again, along with all of its transitive dependencies). This is done using the spark.jars parameter.
To summarize, here's a suggested approach to building and deploying a Spark Application (in this case - using YARN):
Create a library with your distributed code, package it both as a "regular" jar (with a .pom file describing its dependencies) and as a "fat jar" (with all of its transitive dependencies included).
Create a driver application, with compile-dependencies on your distributed code library and on Apache Spark (with a specific version)
Package the driver application into a fat jar to be deployed to driver
Pass the right version of your distributed code as the value of spark.jars parameter when starting the SparkSession
Pass the location of an archive file (e.g. gzip) containing all the jars under lib/ folder of the downloaded Spark binaries as the value of spark.yarn.archive

When building and deploying Spark applications all dependencies require compatible versions.
Scala version. All packages have to use the same major (2.10, 2.11, 2.12) Scala version.
Consider following (incorrect) build.sbt:
name := "Simple Project"
version := "1.0"
libraryDependencies ++= Seq(
"org.apache.spark" % "spark-core_2.11" % "2.0.1",
"org.apache.spark" % "spark-streaming_2.10" % "2.0.1",
"org.apache.bahir" % "spark-streaming-twitter_2.11" % "2.0.1"
)
We use spark-streaming for Scala 2.10 while remaining packages are for Scala 2.11. A valid file could be
name := "Simple Project"
version := "1.0"
libraryDependencies ++= Seq(
"org.apache.spark" % "spark-core_2.11" % "2.0.1",
"org.apache.spark" % "spark-streaming_2.11" % "2.0.1",
"org.apache.bahir" % "spark-streaming-twitter_2.11" % "2.0.1"
)
but it is better to specify version globally and use %% (which appends the scala version for you):
name := "Simple Project"
version := "1.0"
scalaVersion := "2.11.7"
libraryDependencies ++= Seq(
"org.apache.spark" %% "spark-core" % "2.0.1",
"org.apache.spark" %% "spark-streaming" % "2.0.1",
"org.apache.bahir" %% "spark-streaming-twitter" % "2.0.1"
)
Similarly in Maven:
<project>
<groupId>com.example</groupId>
<artifactId>simple-project</artifactId>
<modelVersion>4.0.0</modelVersion>
<name>Simple Project</name>
<packaging>jar</packaging>
<version>1.0</version>
<properties>
<spark.version>2.0.1</spark.version>
</properties>
<dependencies>
<dependency> <!-- Spark dependency -->
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.11</artifactId>
<version>${spark.version}</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming_2.11</artifactId>
<version>${spark.version}</version>
</dependency>
<dependency>
<groupId>org.apache.bahir</groupId>
<artifactId>spark-streaming-twitter_2.11</artifactId>
<version>${spark.version}</version>
</dependency>
</dependencies>
</project>
Spark version All packages have to use the same major Spark version (1.6, 2.0, 2.1, ...).
Consider following (incorrect) build.sbt:
name := "Simple Project"
version := "1.0"
libraryDependencies ++= Seq(
"org.apache.spark" % "spark-core_2.11" % "1.6.1",
"org.apache.spark" % "spark-streaming_2.10" % "2.0.1",
"org.apache.bahir" % "spark-streaming-twitter_2.11" % "2.0.1"
)
We use spark-core 1.6 while remaining components are in Spark 2.0. A valid file could be
name := "Simple Project"
version := "1.0"
libraryDependencies ++= Seq(
"org.apache.spark" % "spark-core_2.11" % "2.0.1",
"org.apache.spark" % "spark-streaming_2.10" % "2.0.1",
"org.apache.bahir" % "spark-streaming-twitter_2.11" % "2.0.1"
)
but it is better to use a variable
(still incorrect):
name := "Simple Project"
version := "1.0"
val sparkVersion = "2.0.1"
libraryDependencies ++= Seq(
"org.apache.spark" % "spark-core_2.11" % sparkVersion,
"org.apache.spark" % "spark-streaming_2.10" % sparkVersion,
"org.apache.bahir" % "spark-streaming-twitter_2.11" % sparkVersion
)
Similarly in Maven:
<project>
<groupId>com.example</groupId>
<artifactId>simple-project</artifactId>
<modelVersion>4.0.0</modelVersion>
<name>Simple Project</name>
<packaging>jar</packaging>
<version>1.0</version>
<properties>
<spark.version>2.0.1</spark.version>
<scala.version>2.11</scala.version>
</properties>
<dependencies>
<dependency> <!-- Spark dependency -->
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_${scala.version}</artifactId>
<version>${spark.version}</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming_${scala.version}</artifactId>
<version>${spark.version}</version>
</dependency>
<dependency>
<groupId>org.apache.bahir</groupId>
<artifactId>spark-streaming-twitter_${scala.version}</artifactId>
<version>${spark.version}</version>
</dependency>
</dependencies>
</project>
Spark version used in Spark dependencies has to match Spark version of the Spark installation. For example if you use 1.6.1 on the cluster you have to use 1.6.1 to build jars. Minor versions mismatch are not always accepted.
Scala version used to build jar has to match Scala version used to build deployed Spark. By default (downloadable binaries and default builds):
Spark 1.x -> Scala 2.10
Spark 2.x -> Scala 2.11
Additional packages should be accessible on the worker nodes if included in the fat jar. There are number of options including:
--jars argument for spark-submit - to distribute local jar files.
--packages argument for spark-submit - to fetch dependencies from Maven repository.
When submitting in the cluster node you should include application jar in --jars.

In addition to the very extensive answer already given by user7337271, if the problem results from missing external dependencies you can build a jar with your dependencies with e.g. maven assembly plugin
In that case, make sure to mark all the core spark dependencies as "provided" in your build system and, as already noted, make sure they correlate with your runtime spark version.

Dependency classes of your application shall be specified in the application-jar option of your launching command.
More details can be found at the Spark documentation
Taken from the documentation:
application-jar: Path to a bundled jar including your application and
all dependencies. The URL must be globally visible inside of your
cluster, for instance, an hdfs:// path or a file:// path that is
present on all nodes

I think this problem must solve a assembly plugin.
You need build a fat jar.
For example in sbt :
add file $PROJECT_ROOT/project/assembly.sbt with code addSbtPlugin("com.eed3si9n" % "sbt-assembly" % "0.14.0")
to build.sbtadded some librarieslibraryDependencies ++= Seq("com.some.company" %% "some-lib" % "1.0.0")`
in sbt console enter "assembly", and deploy assembly jar
If you need more information, go to https://github.com/sbt/sbt-assembly

Add all the jar files from spark-2.4.0-bin-hadoop2.7\spark-2.4.0-bin-hadoop2.7\jars in the project. The spark-2.4.0-bin-hadoop2.7 can be downloaded from https://spark.apache.org/downloads.html

I have the following build.sbt
lazy val root = (project in file(".")).
settings(
name := "spark-samples",
version := "1.0",
scalaVersion := "2.11.12",
mainClass in Compile := Some("StreamingExample")
)
libraryDependencies ++= Seq(
"org.apache.spark" %% "spark-core" % "2.4.0",
"org.apache.spark" %% "spark-streaming" % "2.4.0",
"org.apache.spark" %% "spark-sql" % "2.4.0",
"com.couchbase.client" %% "spark-connector" % "2.2.0"
)
// META-INF discarding
assemblyMergeStrategy in assembly := {
case PathList("META-INF", xs # _*) => MergeStrategy.discard
case x => MergeStrategy.first
}
I've created a fat jar of my appliction using sbt assembly plugin, but when running using spark-submit it fails with the error :
java.lang.NoClassDefFoundError: rx/Completable$OnSubscribe
at com.couchbase.spark.connection.CouchbaseConnection.streamClient(CouchbaseConnection.scala:154)
I can see that the class exists in my fat jar:
jar tf target/scala-2.11/spark-samples-assembly-1.0.jar | grep 'Completable$OnSubscribe'
rx/Completable$OnSubscribe.class
not sure what am i missing here, any clues?

Related

ERROR Executor: Exception in task 0.0 in stage 0.0 (TID 0) java.lang.ClassNotFoundException: scala.None [duplicate]

The common problems when building and deploying Spark applications are:
java.lang.ClassNotFoundException.
object x is not a member of package y compilation errors.
java.lang.NoSuchMethodError
How these can be resolved?
Apache Spark's classpath is built dynamically (to accommodate per-application user code) which makes it vulnerable to such issues. #user7337271's answer is correct, but there are some more concerns, depending on the cluster manager ("master") you're using.
First, a Spark application consists of these components (each one is a separate JVM, therefore potentially contains different classes in its classpath):
Driver: that's your application creating a SparkSession (or SparkContext) and connecting to a cluster manager to perform the actual work
Cluster Manager: serves as an "entry point" to the cluster, in charge of allocating executors for each application. There are several different types supported in Spark: standalone, YARN and Mesos, which we'll describe bellow.
Executors: these are the processes on the cluster nodes, performing the actual work (running Spark tasks)
The relationsip between these is described in this diagram from Apache Spark's cluster mode overview:
Now - which classes should reside in each of these components?
This can be answered by the following diagram:
Let's parse that slowly:
Spark Code are Spark's libraries. They should exist in ALL three components as they include the glue that let's Spark perform the communication between them. By the way - Spark authors made a design decision to include code for ALL components in ALL components (e.g. to include code that should only run in Executor in driver too) to simplify this - so Spark's "fat jar" (in versions up to 1.6) or "archive" (in 2.0, details bellow) contain the necessary code for all components and should be available in all of them.
Driver-Only Code this is user code that does not include anything that should be used on Executors, i.e. code that isn't used in any transformations on the RDD / DataFrame / Dataset. This does not necessarily have to be separated from the distributed user code, but it can be.
Distributed Code this is user code that is compiled with driver code, but also has to be executed on the Executors - everything the actual transformations use must be included in this jar(s).
Now that we got that straight, how do we get the classes to load correctly in each component, and what rules should they follow?
Spark Code: as previous answers state, you must use the same Scala and Spark versions in all components.
1.1 In Standalone mode, there's a "pre-existing" Spark installation to which applications (drivers) can connect. That means that all drivers must use that same Spark version running on the master and executors.
1.2 In YARN / Mesos, each application can use a different Spark version, but all components of the same application must use the same one. That means that if you used version X to compile and package your driver application, you should provide the same version when starting the SparkSession (e.g. via spark.yarn.archive or spark.yarn.jars parameters when using YARN). The jars / archive you provide should include all Spark dependencies (including transitive dependencies), and it will be shipped by the cluster manager to each executor when the application starts.
Driver Code: that's entirely up to - driver code can be shipped as a bunch of jars or a "fat jar", as long as it includes all Spark dependencies + all user code
Distributed Code: in addition to being present on the Driver, this code must be shipped to executors (again, along with all of its transitive dependencies). This is done using the spark.jars parameter.
To summarize, here's a suggested approach to building and deploying a Spark Application (in this case - using YARN):
Create a library with your distributed code, package it both as a "regular" jar (with a .pom file describing its dependencies) and as a "fat jar" (with all of its transitive dependencies included).
Create a driver application, with compile-dependencies on your distributed code library and on Apache Spark (with a specific version)
Package the driver application into a fat jar to be deployed to driver
Pass the right version of your distributed code as the value of spark.jars parameter when starting the SparkSession
Pass the location of an archive file (e.g. gzip) containing all the jars under lib/ folder of the downloaded Spark binaries as the value of spark.yarn.archive
When building and deploying Spark applications all dependencies require compatible versions.
Scala version. All packages have to use the same major (2.10, 2.11, 2.12) Scala version.
Consider following (incorrect) build.sbt:
name := "Simple Project"
version := "1.0"
libraryDependencies ++= Seq(
"org.apache.spark" % "spark-core_2.11" % "2.0.1",
"org.apache.spark" % "spark-streaming_2.10" % "2.0.1",
"org.apache.bahir" % "spark-streaming-twitter_2.11" % "2.0.1"
)
We use spark-streaming for Scala 2.10 while remaining packages are for Scala 2.11. A valid file could be
name := "Simple Project"
version := "1.0"
libraryDependencies ++= Seq(
"org.apache.spark" % "spark-core_2.11" % "2.0.1",
"org.apache.spark" % "spark-streaming_2.11" % "2.0.1",
"org.apache.bahir" % "spark-streaming-twitter_2.11" % "2.0.1"
)
but it is better to specify version globally and use %% (which appends the scala version for you):
name := "Simple Project"
version := "1.0"
scalaVersion := "2.11.7"
libraryDependencies ++= Seq(
"org.apache.spark" %% "spark-core" % "2.0.1",
"org.apache.spark" %% "spark-streaming" % "2.0.1",
"org.apache.bahir" %% "spark-streaming-twitter" % "2.0.1"
)
Similarly in Maven:
<project>
<groupId>com.example</groupId>
<artifactId>simple-project</artifactId>
<modelVersion>4.0.0</modelVersion>
<name>Simple Project</name>
<packaging>jar</packaging>
<version>1.0</version>
<properties>
<spark.version>2.0.1</spark.version>
</properties>
<dependencies>
<dependency> <!-- Spark dependency -->
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.11</artifactId>
<version>${spark.version}</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming_2.11</artifactId>
<version>${spark.version}</version>
</dependency>
<dependency>
<groupId>org.apache.bahir</groupId>
<artifactId>spark-streaming-twitter_2.11</artifactId>
<version>${spark.version}</version>
</dependency>
</dependencies>
</project>
Spark version All packages have to use the same major Spark version (1.6, 2.0, 2.1, ...).
Consider following (incorrect) build.sbt:
name := "Simple Project"
version := "1.0"
libraryDependencies ++= Seq(
"org.apache.spark" % "spark-core_2.11" % "1.6.1",
"org.apache.spark" % "spark-streaming_2.10" % "2.0.1",
"org.apache.bahir" % "spark-streaming-twitter_2.11" % "2.0.1"
)
We use spark-core 1.6 while remaining components are in Spark 2.0. A valid file could be
name := "Simple Project"
version := "1.0"
libraryDependencies ++= Seq(
"org.apache.spark" % "spark-core_2.11" % "2.0.1",
"org.apache.spark" % "spark-streaming_2.10" % "2.0.1",
"org.apache.bahir" % "spark-streaming-twitter_2.11" % "2.0.1"
)
but it is better to use a variable
(still incorrect):
name := "Simple Project"
version := "1.0"
val sparkVersion = "2.0.1"
libraryDependencies ++= Seq(
"org.apache.spark" % "spark-core_2.11" % sparkVersion,
"org.apache.spark" % "spark-streaming_2.10" % sparkVersion,
"org.apache.bahir" % "spark-streaming-twitter_2.11" % sparkVersion
)
Similarly in Maven:
<project>
<groupId>com.example</groupId>
<artifactId>simple-project</artifactId>
<modelVersion>4.0.0</modelVersion>
<name>Simple Project</name>
<packaging>jar</packaging>
<version>1.0</version>
<properties>
<spark.version>2.0.1</spark.version>
<scala.version>2.11</scala.version>
</properties>
<dependencies>
<dependency> <!-- Spark dependency -->
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_${scala.version}</artifactId>
<version>${spark.version}</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming_${scala.version}</artifactId>
<version>${spark.version}</version>
</dependency>
<dependency>
<groupId>org.apache.bahir</groupId>
<artifactId>spark-streaming-twitter_${scala.version}</artifactId>
<version>${spark.version}</version>
</dependency>
</dependencies>
</project>
Spark version used in Spark dependencies has to match Spark version of the Spark installation. For example if you use 1.6.1 on the cluster you have to use 1.6.1 to build jars. Minor versions mismatch are not always accepted.
Scala version used to build jar has to match Scala version used to build deployed Spark. By default (downloadable binaries and default builds):
Spark 1.x -> Scala 2.10
Spark 2.x -> Scala 2.11
Additional packages should be accessible on the worker nodes if included in the fat jar. There are number of options including:
--jars argument for spark-submit - to distribute local jar files.
--packages argument for spark-submit - to fetch dependencies from Maven repository.
When submitting in the cluster node you should include application jar in --jars.
In addition to the very extensive answer already given by user7337271, if the problem results from missing external dependencies you can build a jar with your dependencies with e.g. maven assembly plugin
In that case, make sure to mark all the core spark dependencies as "provided" in your build system and, as already noted, make sure they correlate with your runtime spark version.
Dependency classes of your application shall be specified in the application-jar option of your launching command.
More details can be found at the Spark documentation
Taken from the documentation:
application-jar: Path to a bundled jar including your application and
all dependencies. The URL must be globally visible inside of your
cluster, for instance, an hdfs:// path or a file:// path that is
present on all nodes
I think this problem must solve a assembly plugin.
You need build a fat jar.
For example in sbt :
add file $PROJECT_ROOT/project/assembly.sbt with code addSbtPlugin("com.eed3si9n" % "sbt-assembly" % "0.14.0")
to build.sbtadded some librarieslibraryDependencies ++= Seq("com.some.company" %% "some-lib" % "1.0.0")`
in sbt console enter "assembly", and deploy assembly jar
If you need more information, go to https://github.com/sbt/sbt-assembly
Add all the jar files from spark-2.4.0-bin-hadoop2.7\spark-2.4.0-bin-hadoop2.7\jars in the project. The spark-2.4.0-bin-hadoop2.7 can be downloaded from https://spark.apache.org/downloads.html
I have the following build.sbt
lazy val root = (project in file(".")).
settings(
name := "spark-samples",
version := "1.0",
scalaVersion := "2.11.12",
mainClass in Compile := Some("StreamingExample")
)
libraryDependencies ++= Seq(
"org.apache.spark" %% "spark-core" % "2.4.0",
"org.apache.spark" %% "spark-streaming" % "2.4.0",
"org.apache.spark" %% "spark-sql" % "2.4.0",
"com.couchbase.client" %% "spark-connector" % "2.2.0"
)
// META-INF discarding
assemblyMergeStrategy in assembly := {
case PathList("META-INF", xs # _*) => MergeStrategy.discard
case x => MergeStrategy.first
}
I've created a fat jar of my appliction using sbt assembly plugin, but when running using spark-submit it fails with the error :
java.lang.NoClassDefFoundError: rx/Completable$OnSubscribe
at com.couchbase.spark.connection.CouchbaseConnection.streamClient(CouchbaseConnection.scala:154)
I can see that the class exists in my fat jar:
jar tf target/scala-2.11/spark-samples-assembly-1.0.jar | grep 'Completable$OnSubscribe'
rx/Completable$OnSubscribe.class
not sure what am i missing here, any clues?

sryza/spark-timeseries: NoSuchMethodError: scala.runtime.IntRef.create(I)Lscala/runtime/IntRef;

I have a Scala project that I build with sbt. It uses the sryza/spark-timeseries library.
I am trying to run the following simple code:
val tsAirPassengers = new DenseVector(Array(
112.0,118.0,132.0,129.0,121.0,135.0,148.0,148.0,136.0,119.0,104.0,118.0,115.0,126.0,
141.0,135.0,125.0,149.0,170.0,170.0,158.0,133.0,114.0,140.0,145.0,150.0,178.0,163.0,
172.0,178.0,199.0,199.0,184.0,162.0,146.0,166.0,171.0,180.0,193.0,181.0,183.0,218.0,
230.0,242.0,209.0,191.0,172.0,194.0,196.0,196.0,236.0,235.0,229.0,243.0,264.0,272.0,
237.0,211.0,180.0,201.0,204.0,188.0,235.0,227.0,234.0,264.0,302.0,293.0,259.0,229.0,
203.0,229.0,242.0,233.0,267.0,269.0,270.0,315.0,364.0,347.0,312.0,274.0,237.0,278.0,
284.0,277.0,317.0,313.0,318.0,374.0,413.0,405.0,355.0,306.0,271.0,306.0,315.0,301.0,
356.0,348.0,355.0,422.0,465.0,467.0,404.0,347.0,305.0,336.0,340.0,318.0,362.0,348.0,
363.0,435.0,491.0,505.0,404.0,359.0,310.0,337.0,360.0,342.0,406.0,396.0,420.0,472.0,
548.0,559.0,463.0,407.0,362.0,405.0,417.0,391.0,419.0,461.0,472.0,535.0,622.0,606.0,
508.0,461.0,390.0,432.0
))
val period = 12
val model = HoltWinters.fitModel(tsAirPassengers, period, "additive", "BOBYQA")
It builds fine, but when I try to run it, I get this error:
Exception in thread "main" java.lang.NoSuchMethodError: scala.runtime.IntRef.create(I)Lscala/runtime/IntRef;
at com.cloudera.sparkts.models.HoltWintersModel.convolve(HoltWinters.scala:252)
at com.cloudera.sparkts.models.HoltWintersModel.initHoltWinters(HoltWinters.scala:277)
at com.cloudera.sparkts.models.HoltWintersModel.getHoltWintersComponents(HoltWinters.scala:190)
.
.
.
The error occurs on this line:
val model = HoltWinters.fitModel(tsAirPassengers, period, "additive", "BOBYQA")
My build.sbt includes:
name := "acme-project"
version := "0.0.1"
scalaVersion := "2.10.5"
libraryDependencies ++= Seq(
"org.apache.spark" %% "spark-hive" % "1.6.0",
"net.liftweb" %% "lift-json" % "2.5+",
"com.github.seratch" %% "awscala" % "0.3.+",
"org.apache.spark" % "spark-mllib_2.10" % "1.6.2"
)
I have placed sparkts-0.4.0-SNAPSHOT.jar in the lib folder of my project. (I would have preferred to add a libraryDependency, but spark-ts does not appear to be on Maven Central.)
What is causing this run-time error?
The library requires Scala 2.11, not 2.10, and Spark 2.0, not 1.6.2, as you can see from
<scala.minor.version>2.11</scala.minor.version>
<scala.complete.version>${scala.minor.version}.8</scala.complete.version>
<spark.version>2.0.0</spark.version>
in pom.xml. You can try changing these and seeing if it still compiles, find which older version of sparkts is compatible with your versions, or update your project's Scala and Spark versions (don't miss spark-mllib_2.10 in this case).
Also, if you put the jar into lib folder, you also have to put its dependencies there (and their dependencies, etc.) or into libraryDependencies. Instead, publish sparkts into your local repository using mvn install (IIRC) and add it to libraryDependencies, which will allow SBT to resolve its dependencies.

spark-shell dependencies, translate from sbt

While checking how to use the cassandra connection, the documentation instructs to add this to the sbt file:
"libraryDependencies += "com.datastax.spark" %% "spark-cassandra-connector" % "1.6.0-M1"
In general, is there an obvious, straight forward logic to translate this into the corresponding:
spark-shell --packages "field1":"field2"
I've tried:
spark-shell --packages "com.datastax.spark":"spark-cassandra-connector"
and a few other things but that doesn't work.
I believe it is --packages "groupId:artifactId:version". If you have multiple packages, you can comma separate them.
--packages "groupId1:artifactId1:version1, groupId2:artifactId2:version2"
In sbt
val appDependencies = Seq(
"com.datastax.spark" % "spark-cassandra-connector_2.10" % "1.6.0-M1"
)
and
val appDependencies = Seq(
"com.datastax.spark" %% "spark-cassandra-connector" % "1.6.0-M1"
)
are identical.
In case you use %% syntax (after the groupId) in sbt, it automatically picks up the artifact for your scala version. So using scala 2.10 it changes your spark-cassandra-connector to spark-cassandra-connector_2.10. Not sure this feature is there when using spark-shell, so you might need to ask for the scala2_10 version of your artifact explicitly like this: --packages "com.datastax.spark:spark-cassandra-connector_2.10:1.6.0-M1"
Version should be specified.
spark-shell --packages "com.datastax.spark":"spark-cassandra-connector_2.11":"2.0.0-M3"
You can find version information from http://search.maven.org/#search%7Cga%7C1%7Cspark-cassandra-connector .
Follow the instructions as posted on the Spark Packages Website
To use the Spark-Shell
$SPARK_HOME/bin/spark-shell --packages datastax:spark-cassandra-connector:1.6.0-M1-s_2.10
There are also instructions for a variety of build systems
SBT
resolvers += "Spark Packages Repo" at "http://dl.bintray.com/spark-packages/maven"
libraryDependencies += "datastax" % "spark-cassandra-connector" % "1.6.0-M1-s_2.11"
And Maven
<dependencies>
<!-- list of dependencies -->
<dependency>
<groupId>datastax</groupId>
<artifactId>spark-cassandra-connector</artifactId>
<version>1.6.0-M1-s_2.11</version>
</dependency>
</dependencies>
<repositories>
<!-- list of other repositories -->
<repository>
<id>SparkPackagesRepo</id>
<url>http://dl.bintray.com/spark-packages/maven</url>
</repository>
</repositories>

How to add Java dependencies to Scala projects's sbt file

I have a spark streaming Scala project which uses Apache NiFi receiver. The projects runs fine under Eclipse/Scala IDE and now I want to package it for deployment now.
When I add it as
libraryDependencies += "org.apache.nifi" %% "nifi-spark-receiver" % "0.3.0"
sbt assumes it's a Scala library and tries to resolve it.
How doe I add NiFi receiver and all it's dependencies to project's SBT file?
Also, is it possible to pint dependencies to local directories instead of sbt trying to resolve?
Thanks in advance.
Here is my sbt file contents:
name := "NiFi Spark Test"
version := "1.0"
scalaVersion := "2.10.5"
libraryDependencies += "org.apache.spark" %% "spark-core" % "1.5.2" % "provided"
libraryDependencies += "org.apache.nifi" %% "nifi-spark-receiver" % "0.3.0"
libraryDependencies += "org.apache.nifi" %% "nifi-spark-receiver" % "0.3.0"
Double % are used for adding scala version as suffix to the maven artefact. It is required because different scala compiler versions produces incompatible bytecode. If you are would like to use java library from maven, then you should use single % character
libraryDependencies += "org.apache.nifi" % "nifi-spark-receiver" % "0.3.0"
I also found that I can put libraries the project depends on into the lib folder and they will be picked up during assembly.

How to add dependency files to Scala?

I'm new to Scala and Spark and and started writing a simple Apache Spark program in Scala IDE (in Eclipse). I added the dependency jar files to my project as I usually do in my java project but it can't recognize them and give me the following error message object apache is not a member of package org. How should I add the dependency jar files?
The jar files I'm adding are the ones exist under 'lib' directory where Spark in installed.
For scala you use SBT as a dependency manager and code compiler.
More information on how to set it up here:
http://www.scala-sbt.org/release/tutorial/Setup.html
However your build file will look something like this:
name := "Test"
version := "1.0"
scalaVersion := "2.10.4"
libraryDependencies += "org.apache.spark" %% "spark-sql" % "1.3.0"
libraryDependencies += "org.apache.spark" %% "spark-core" % "1.3.0"