ocean simulation in Blender vs. Unity3D - unity3d

I want to make an ocean simulation that is physically accurate.
The height and speed of the waves should be controlled by the keyboard at runtime.
In the ocean, there needs to be a boat that either moves along a path or is controlled by the keyboard.
So far I have made this simulation in Blender:
https://youtu.be/LJ6ncxv-k7w
The problems are as follows:
1. There is no collision with the ocean
2. There are no controllers for the boat's movement
3. I am able to control the waves, but not at runtime
I thought about switching to Unity because the user interface is obviously better, as it is a game engine. I do not want to use Blender's game engine as its future is uncertain at this point.
After reviewing the various Unity water simulation plugins, I came to these conclusions:
1. the buoyancy is great in most of them, such as in Aquas and SUIMONO
2. None of them seems to offer a physically realistic collision with the boat.
3. they do offer wave height control, but not much else as far as wave properties go.
4. Some of the plugins can be combined to get closer to satisfactory results.
My question is:
Should I go with Unity completely?
It seems perfect for my user control needs, but the plugins are lacking in the collision aspect. I came across this video, but no tutorial: https://www.youtube.com/watch?v=T0D_vrYm4FQ
Even if there was one, how could I combine it with the plugins?
Is there a way to build the scene in Blender and then import it into Unity?
Would I be able to control the waves and boat after importing them?
Thank you very much for your time and knowledge.

if you really means an ocean, i suggest you to check out NVIDIA WaveWorks. it's a C library and doesn't have an officially integration with Unity3D, but since you go this far for it, i guess maybe you'll have enough courage to trying make it into a useable plugin yourself.

Related

Particles or Animation

thank you so much for all the fast responses I truly appreciate it. I have another question I've been wondering about, so I am working mobile game and I want to keep the size as small as possible. So I wanted to know does using Unity particle effects, impact performance and game size? I was wondering, if i wanted to make a visual effect of breaking apart a GameObject when destroyed, should I use unity particle system to do so? or should I make an animation of that game object breaking and use that instead?
to summeize should I be making animation for things such as rain effects and confetti and fire effect instead of making them with the particle system? is there any drawback to using one over the other?
As TEEBQNE said it is your choice between animations and the particle system depending on what you need. If your team is small or you are a single developer it is best to opt for the particle system for the flexibility of changes and quick execution.
Optimising the particle system is not hard, just make sure you don't overdo the numbers and avoid some common mistakes. There is a list of the best practices for optimization on mobile games found here
You can also find some pretty good looking particles premade in the unity asset store, which are already optimized well.

Unity3D Wheel Collider - Friction Curve? Alternatives?

so I've been trying to see if I can make use of Wheel Colliders for the past several months now. As much as I've managed to figure out more and more things about how to set them up properly, there's some things I've been noticing that seem impossible to avoid:
Even if your friction sideways stiffness is lower, there's a chance that your car will continue to "spin" or "rotate" in the direction you were steering if you JUST hold down your input long enough to get the car beyond just rotating. I've noticed this will happen, whether for example the "SteerHelper" or "TractionControl" functions are doing their work or not. This will put a dent in ensuring smooth turn movement. Now, I don't know if maybe this is just due to realistic car physics (I mean, I can picture the car skidding in scenarios where they lost grip of the road for sure), but it just feels kinda glitchy. Sometimes, even when I'm not turning, the car will start to turn a little to the left or right and then gradually seem to "lean" that way in terms of applied torque to the rigidbody. I've seen many suggestions for trying to stop the rigidbody from doing this. Here is one way I'm trying to work against this:
rb.AddTorque(-rb.angularVelocity * 2);
However, it seems that the car will still "spin" more than intended. What would be ideal is to be able to MAYBE allow the car to turn a little extra after the left or right steer buttons were released (maybe more or less depending on the vehicle), and no more than that to ensure there is maximum control to give the engaged and maybe arcadey game play I've been going for for a long while.
It's been difficult to adapt an ideal friction curve value that would give the most ideal feel of a drift turn, especially a more arcadey one. I'm not trying to go for wide turns that slow you down, I'm trying to go for tight (yet controllable) turns that allow you to preserve most of your speed. I find that especially at higher values of stiffness, as I know many people have observed in other posts, that again, the car will turn back an extremely high amount sometimes (you drift left enough, a force is turning your vehicle way to the right). It's sad, because I've wanted to be able to say I've "mastered this beast" and used it for my purposes, but I don't know if that's really a good practical expectation for anyone. I even worked my own alternate friction curve values that would be used in the controller:
But I guess as some people say, you can't polish something that's broken? Moving to the third point...
I've read so many posts that show how to adjust a vehicle's center of mass, or to add more colliders in different spots to correct it, using scripting to add an offset to the center of mass, etc. So many tips that say, "lower the center of mass, you'll find it" and I give that a try. When the center of mass is too low, my car can get pretty shaky on the terrain (not that it hasn't in the past, but it's often been things I could correct, like the weird initialization of the attachedRigidBody of the wheel colliders themselves in the beginning, etc). High enough, and of course, (even when it's lower sometimes???) the car will just start spinning in the air on either multiple axes or specifically the forward z, when you drive off a ledge or bump into something with a high enough speed. It just seems inevitable.
I've been trying to give my benefits of a doubt. I like to think there's a correct way to use this thing, and that I'm just not familiar enough with Unity3D physics concepts. However, it just seems more and more that I'm investing too much time in a broken component - or, maybe I just never got the best grip of physics.
I was about ready to try just convex mesh colliders around my tires, and just abandon the idea of gripping physics altogether, but I'd love to hear suggestions to either address anything I've mentioned above, or just a more ideal package to move onto. I've glanced at packages like Vehicle Physics Pro, but I do want to be sure I'm getting something that makes sense.
Full disclosure: I'm in the middle of trying to make a game that feels incredibly similar to F-Zero, but with wheels.
Thanks in advance for any thoughts or suggestions you can provide.
(Maybe not an answer per se, but hopefully helpful.)
Note Unity also suggests to possibly give the car a constant downward force via script. It might be telling that such workarounds are officially given, one would think proper physics would, well, properly work without them.
There's some assets you might want to give a try generally:
One is the Unity Asset Store asset called Arcade Car Physics, and it's free. I've tried it and it works (but not sure if it works for your needs). It's using Unity's native Wheel Collider plus extra scripts.
Another is the Arcade Car Physics github project. It has nice plane stabilization and more, and works well. It's not using the native Wheel Collider.
Then there's this asset called Vehicle Physics. Instead of native Wheel Colliders, they've create a fully custom wheel system so that it would be more physically workable. The asset is not free, but they offer a free demo executable where you can drive around different vehicles, and that works quite well. (I haven't yet bought this asset myself.) As a downside, some reviews mention there's some complexity in setting this up (and I suppose future support for this custom Wheel Collider hinges on the company continuing to exist).
Good luck!

scnBox with scnTube through the middle

I have been digging around trying to find a way to show a game board of sorts.
It is basically a square board with a round hole in the middle, I am able to render the scnBox and the scnTube, but I would like the area where the scnTube sits in the box for the box to be transparent and see through the game board, but can't seem to find anywhere that has an example. Any help would be much appreciated. I am hoping that I am just missing something very simple, but this is my first time using scene kit.
Thank you.
Before Unreal Engine 4, (UDK and prior) Epic's modelling space was subtraction - a filled block was your game world and its extents. From inside this block you took chunks out to create space for players to run around in, and shoot each other. All's fair in love and war.
I'm telling you this because it's a good example of how contrived 3D modelling is compared to real world scenarios, and should (hopefully) put you at sufficient unease to digest what follows.
This approach of carving out of a finite block is still in Unreal Engine 4 and popular with older users, but it now defaults to an open, infinite world into which things are added. Most new users gravitate towards building into an infinite space of nothingness rather than carving space out of a solid, finite block.
Everything about 3D modelling is virtual, and virtually impossible to relate to the real world. Instead of thinking in terms of how things could be done if objects were real and literal, you need to think in terms of the limitations (and there are many) of geometry definitions as used in most 3D modelling and game engines.
The programming equivalent of this mental gymnastics is going from the concept of classes and objects to their realities within languages and frameworks. On the one hand the ideas and their ideals are wonderful, and on the other the realities are a bleak reminder that programming languages haven't really progressed very far, at all.
3D modelling is exactly like this. It's not much further along than it was decades ago, and is still using archaic ways to solve many of its original problems.
Cutting a nice, clean, efficient round hole in a cube is one such original problem.
A very simple shape is being intersected and cut by a shape with the potential for infinite complexity. What should happen? Should the simple become complex or the complex become simple? How to make the most graceful transition between the two?
That's the problem you're facing: a cube is a simple geometric shape, easily defined by minimal line segments. A cylinder introduces infinite possibilities for line segmentation around its circumference.
So somewhere along the lines of development, the architects of 3D modelling had to come up with a way to make these contrasting line complexities play well together for lightweight presentation on limited hardware. Their solution, in most cases, is a hybrid and a disaster of user operability, but masterful in its geometric efficiency: Polygon modelling, UVW unwrapping and subdivision!
All of which means that if you want to achieve this in the best way possible, with today's tools, for the purposes of Scene Kit, I suggest polygon modelling this board in Maya for 4 reasons.
It's got a 30 day free trial.
It works on a Mac
It's polygon modelling tools are second only to 3ds Max
It's easier to learn (for a complete newcomer) than MODO, and miles easier to learn than Blender.
MODO is interesting if you're already skilled in Polygon modelling, but it's so utterly discombobulating if you don't have that prior experience that I'd recommend using just about anything else first. Except Blender. Blender is free, but don't be tempted. It will cost you more in learning time than buying a copy of every other professional 3D app.
In MODO's favour, and the reason I mention it, it does export nicely for Scene Kit. I know that for a fact, but am not yet sure how well Maya exports for Scene Kit.
Which is the next problem you're going to come up against. All COLLADA files are not born equal.
New Maya does have Unity and Unreal export presets, so I presume it's possible to calibrate its COLLADA exports to match the demands of Scene Kit perfectly, just haven't yet needed to do it. This will (very likely) involve trial and error to get the settings right. It would be nice if Apple would tell us exactly how to configure export from all major 3D apps for Scene Kit, but instead they're giving us the half baked Model I/O, so we can double the effort of importing artwork.
All context aside (which has largely been to demonstrate that 3D is no simpler nor more refined than using an IDE and frameworks like Xcode and Cocoa), here's the meat and potatoes:
A video on one aspect of what's best to make holes, and starts out as you are, with a cube and a cylinder:
https://www.youtube.com/watch?v=zaEv5rio8bk
But it does presume a certain amount of Maya familiarity, some of which you can gain from this rather slow and ponderous examination of two other ways to make holes in cubes:
https://www.youtube.com/watch?v=lvMfoH5Ikrc
Yes, if you're counting, that's 3 ways to make holes. Actually four, because the first video starts with the boolean operation you might have been expecting to be how this could/should be done. In some parallel future we'll have well working boolean geometry operations. We're not there, yet.
Hopefully that same parallel future will offer us a programming language, frameworks and terminology that's not confusing and maintains metaphors long enough to make teaching easy and usage elegant and simple.
I dont know about that long answer but this can be achieved with Boolean Subtraction. You create a cube and a cylinder. You subtract the cylinder from the cube. In 3ds Max this is under compound objects-modifiers-boolean subtraction. I guess Maya has a similair function somwhere in the menus.

Leap Motion Custom Gestures

Is there any program that allows custom gestures recording and exporting?
Of course custom gestures for Leap Motion.
The pre-made gestures are not enough for me to make the app.
I tried this old system:
LeapTrainer
However, I have a problem on importing and exporting, and the data exported seems not useful out of LeapTrainer.
Update 1: I tried to find gadgets from Unity Asset Store, but to no avail. Can anyone suggest some tools/SDKs? My main purpose is to use gestures as dynamic slashing(vertically/horizontally/diagonally).
Please anyone can help me?
I started the same way as you did, but i end up building my own gestures base on the API outputs.
Its not that hard you just need to think it a bit.
For example working with fingers, isExtended and Angle between them helps alot.
For the palm you can use the GetPosition and where is pointing at.
So you can do if palm pointing to my face and the hand is open(base on fingers) you will mimic the ARM HMD menu that you see on the LM samples out there.
Or if IndexFinger is extended and the thumb draw a gun on your hand, if the thumb angle is < 10 make the gun shoot.
I truly recommend you to go that way, it will help to expand your knowledge on the device API. 3rd party tools might work but you need to learn how to use them, so better spend that time learning the LM API.

Collision detection with images on the iPhone using OpenGL

I'm working on a 2D game (kind of like a top down space shooter) for the iPhone using an engine very similar to cocos2d (not exactly though) on OpenGL ES. I'm trying to figure out how I'm going to do collision detection.
All the ships for my game are images, and the game will load the image as a texture onto the screen. I've got very very simple detection going already that basically just takes the rectangles of the images and checks to see if those collide and can do that just fine.
But, of course the ship isn't perfectly taking up the entire rectangle so there is whitespace in there. So my question is how am I supposed to account for that whitespace? Do I have to have the matrices of the ships stored? Or is there another way? I've also heard of possibly using the Chipmunk physics engine for collision detection? How would that work?
(1) regarding Chipmunk, the short answer is yes you should immediately download chipmunk, donate something to the bloke, and start learning about it.
Working with that for a day or so will basically answer all the questions you have. If you want to work with physics games you're going to need to get in to it.
(2) you ask about using an approximation ("just" a rectangle) instead of something more accurately shaped like your spaceships. In fact, you'll be perhaps amazed to learn, that is precisely how it is usually done in all your famous big-name games you've played since we were all kids! Indeed sometimes you might use little more than A DOT (!) to detect collisions.
What you'd probably do in production is try a more complicated model, and play with it for a few hours and see, is it actually any better to play with than your simple dot or rectangle model.
If you do want to make a more complicated model -- just make one! Build it up from three or four rectangles using your current system. Try them "all against each other", and have "one big one to check first" to see if it is even anywhere near each other (sort of a simple spatial hashing).
You will find that when you do it with Chipmunk, which as you now know you have to immediately begin after reading this message, you just build it up the same tedious way. It's not a magic bullet. But if you were going to use a "more complicated model" yes it is better to go with something standard, chipmunk, to do the work in - it will get done quicker and better. There is heaps to learn and you should hop to it!
(3) Unity is not just for 3D Finally if you want to do it the smart-ass grown up way, you'd have to use Unity3D which will let you access the very metal, the Nvidia physics on the chipset. Note that unity works perfectly for 2D games also - you just click one button in unity to use a 2D projection (many brand-name ifone 2D games are done exactly like that).
If you use that approach, you can (if you want) have "absolutely exact" physics, with every nook and cranny of your model modelled.
What is the downside to doing this? Ah hah ... well the thing is, you need superb actual 3D models of all the stuff in your game! (Like you see them building in the "how we made the movie" special features that come with your favourite Pixar blu-ray.) To do that you need things like autodesk, maya and the like. you would quite likely buy some models ready-made from a digital prop shop (no need to build "a chair" as it has been done 1000 times already and you can buy one for ten dollars).
(Unity3D is completely free to use for a few months while you see if it can make you money.)
Incidentally on the Chipmunk front --- you can just use Corona which is ridiculously easy to use and has chipmunk-like physics completely built in with zero effort on your part! You could have the whole game done in less time than it took to write this email. You could be selling your game already and thinking up the next one. Or, you could use "Cocos" which indeed has a chipmunk-like physics library built-in .. personally (just me) I do not like and won't touch cocos - but of course many games use it.
(It seems pointless, to me, using cocos which is a "for idiots" product, when you can just go ahead and use Corona, which is a "for idiots" product but stupendously easier to use, 1000x more solid, and probably literally 10x faster to finish your product and start making money.)
Noel Summary:
So in some sense using Unity3D (and hence, the actual nvidia physics on your computer's chips) is the ultimate solution if you want detailed nook-and-cranny collisions. Going down one step, Chipmunk is exactly, precisely what you should be using on the ifone/ipad for 2D physics -- it is precisely what is used in all the famous games we know so well. You have a bit of learning to do so hop to it - it's superfun. Finally go right ahead and just make your current model more complicated if you wish - roll your own by adding more rectangles!
And the fourth point is, be sure to remember that in games, astonishingly, you can often get away with remarkably simple physics (often SIMPLER!! than one rectangle - just a damn point - ie, simply measuring the distance between centers!) Fifthly after going to all the effort of testing more detailed physics, you would play test one against each other, and find out what is the simplest physics you can get away with.