MATLAB: summing out one variable in equation - matlab

I have the variables
X = 1x20 vector of doubles
i = 0:M
j = 0:M
And the equation
sum n=1 to length(X) : (X(n)^(i+j))
Is there a way to obtain an MxM matrix (through the indices i,j) while summing out n in each cell? I tried this with symsum but it doesn't allow indexing with n.
Any help is appreciated!

By reshaping X to a vector of size [1 x 1 x 20] and using implicit expansion a 3D [M+1 x M+1 x 20] array is created then by summing along the third dimension the result can be obtained.
X = rand(1,20);
M = 30;
ii = 0:M;
jj = (0:M).';
Y = reshape(X,1,1,[]);
result = sum(Y.^(ii+jj), 3);
However as the expression Y.^(ii+jj) creates a 3D [M+1 x M+1 x 20] array it may need a large amount of memory that leads to decreased performance.
We know that x^(i+j) can be written as x^i * x^j So the expression can be written as:
result = sum(Y.^ii .* Y.^jj,3);
It has the same memory consumption as the previous method. But when we reach an expression that contains sum of products we should think about converting it to very fast matrix multiplication :
Z = X .^ jj; % A [M+1 x 20] matrix is created(implicit expansion)
result = Z * Z.' % multiply Z by its transpose
So the same result is obtained without the complexity of the other solutions.

Related

How can I multiply a matrix with vector and reshape it using one matrix multiplication using matlab

I have a matrix X with size N x N, and a vector Y with size NM x 1. I want to multiply the matrix X with every N elements in Y and then reshape the resultant matrix Z row-wise. In other words, I first reshape the vector Y into a matrix Y_2 with size N x M . Then, get the matrix Z = X * Y_2, and finally reshape the matrix Z row-wise.
That process, I want to do it in matlab using matrices multiplications, as follows:
clear all; clc; clear;
N = 4; M = 8;
X = randn(N,N);
Y = randn(N*M,1);
Z = kron(eye(M,M),X) * Y;
The problem, is that I don't get $Z$ similar to that process explained above. I mean the result of the way I used in Matlab code is not similar to the results of the process explained before. how can I do it, where is it error in my other method?

Which function allow me to calculate cumulative variance over a vector?

I need to calculate the cumulative variance of a vector. I have tried to build and script, but this script takes too much time to calculate the cumulative variance of my vectors of size 1*100000. Do you know if there exists a faster way to find this cumulative variance?
This is the code I am using
%%Creation of the rand vectors. ans calculation of the variances
d=100000; %dimension of the vectors
nv=6 %quantity of vectors
for j=1:nv;
VItimeseries(:,j)=rand(d,1); % Final matrix with vectors
end
%% script to calculate the cumulative variance in the columns of my matrix
VectorVarianza=0;
VectoFinalVar=0;
VectorFinalTotalVAriances=zeros(d,nv);
for k=1:nv %number of columns
for j=1:numel(VItimeseries(:,k)) %size of the rows
Vector=VItimeseries(:,k);
VectorVarianza(1:j)= Vector(1:j); % Vector to calculate the variance...
...Independently
VectorFinalVar(j,k)= var(VectorVarianza);%Calculation of variances
end
VectorFinalTotalVAriances(:,k)=VectorFinalVar(:,k)% construction of the...
...Final Vector with the cumulative variances
end
Looping over the n elements of x, and within the loop computing the variance of all elements up to i using var(x(1:i)) amounts to an algorithm O(n2). This is inherently expensive.
Sample variance (what var computes) is defined as sum((x-mean(x)).^2) / (n-1), with n = length(x). This can be rewritten as (sum(x.^2) - sum(x).^2 / n) / (n-1). This formula allows us to accumulate sum(x) and sum(x.^2) within a single loop, then compute the variance later. It also allows us to compute the cumulative variance in O(n).
For a vector x, we'd have the following loop:
x = randn(100,1); % some data
v = zeros(size(x)); % cumulative variance
s = x(1); % running sum of x
s2 = x(1).^2; % running sum of square of x
for ii = 2:numel(x) % loop starts at 2, for ii=1 we cannot compute variance
s = s + x(ii);
s2 = s2 + x(ii).^2;
v(ii) = (s2 - s.^2 / ii) / (ii-1);
end
We can avoid the explicit loop by using cumsum:
s = cumsum(x);
s2 = cumsum(x.^2);
n = (1:numel(x)).';
v = (s2 - s.^2 ./ n) ./ (n-1); % v(1) will be NaN, rather than 0 as in the first version
v(1) = 0; % so we set it to 0 explicitly here
The code in the OP computes the cumulative variance for each column of a matrix. The code above can be trivially adapted to do the same:
s = cumsum(VItimeseries,1); % cumulative sum explicitly along columns
s2 = cumsum(VItimeseries.^2,1);
n = (1:size(VItimeseries,1)).'; % use number of rows, rather than `numel`.
v = (s2 - s.^2 ./ n) ./ (n-1);
v(1,:) = 0; % fill first row with zeros, not just first element

Perform element wise multiplication of vectors efficiently?

I have to perform matrix updating by M = M + c*a*a' large number of times, where c is a constant and a is a column vector. If the size of matrix is larger than 1000, this simple updating will cost most of the time of my function, typically more than 1 min counted by profile.
Main codes are:
for i = 1:N
_do something..._
for k = 1:n
a(1:k) = M(1:k,1:k)*p(1:k);
M(1:k,1:k) = M(1:k,1:k)+c*a(1:k)*a(1:k)';
M(1:k, k+1) = b(1:k);
M(k+1, 1:k) = b(1:k)';
M(k+1, k+1) = x;
......
end
end
I have preallocated all variables, column vectors p and b are known, and x is another constant.
As I have large number of data to process by this function, does there exist more efficient alternative to this matrix updating?
You can concatenate a vectors to create a matrix A then apply multiplication just one time.
A =[a1 a2 a3];
M = c * A * A.';
consider the example
A = rand(5,5);
M = 0;
c=4;
for n = 1:5
M = M + c * A(:,n) * A(:,n).';
end
and this one
M1 = c * A * A.'
both M and M1 are equal
Have you tried using bsxfun?
In any case, bsxfun is much faster than regular multiplication, but the vectors/matrices have to be of equal length (which they are for you, aren't they?), and it's operating elementwise (i.e. a Nx1 vector bsx-multiplied with itself yields a Nx1 vector, multiplied with the transpose however yields a NxN matrix).
see https://mathworks.com/help/matlab/ref/bsxfun.html
use as
bsxfun(#times, a, a')

Multiplication of vectors in two loops

I want to multiply two vectors to produce a matrix.
I have a vector 1*m and another 1*n which are in my case V (1*71) and I (1*315). The other vectors have same length as I.
I want to multiply every value of I with all values of V and have the answer in a matrix where every row or column of new matrix is I(t).*V
Ir and Temp are vectors with the size of 1*315 and all the variables have the same length and T is 315.
The other parameters that you see in the code are constant values.
This is the code :
function [I] = solar2diodedyn( Ir,time,Temp )
V = 0:0.01:0.7; %open circuit voltage of one cell in V.
for t=1:time;
T(t)= Temp(t)+273;
Vt(t)=(k*T(t))/q;
Iph(t) = Isc_cell*(Ir(t)/1000)*(1+(T_co*(Temp(t)-25)));
I0(t)=Is1*((T(t)/Tmeas)^(3/n1))*exp(Eg*((T(t)/Tmeas)-1)/(n1*Vt(t)));
I02(t)=Is2*((T(t)/Tmeas)^(3/n2))*exp(Eg*((T(t)/Tmeas)-1)/(n2*Vt(t)));
I(t) = zeros(size(t));
i=length(V);
for x=1:i
I(t) = Iph(t) - I0(t)*(exp((V(x)+I(t)*Rs)/(n1*Vt(t)))-1)-I02(t)*(exp((V(x)+I(t)*Rs)/(n2*Vt(t)))-1)-((V(x)+I(t)*Rs)/Rsh);
end
end
Thanks in advance
If you have two vectors x (of size 1-by-n) and y (of size 1-by-m) and you want a matrix M of size n-by-m such that M(i,j) = x(i) * y(j) then you are trying to compute the outer product of x and y.
This can be done easily with matlab
>> M = x.' * y;

Using matlabs regress like polyfit

I have:
x = [1970:1:2000]
y = [data]
size(x) = [30,1]
size(y) = [30,1]
I want:
% Yl = kx + m, where
[k,m] = polyfit(x,y,1)
For some reason i have to use "regress" for this.
Using k = regress(x,y) gives some totally random value that i have no idea where it comes from. How do it?
The number of outputs you get in "k" is dependant on the size of input X, so you will not get both m and k just by putting in your x and y straight. From the docs:
b = regress(y,X) returns a p-by-1 vector b of coefficient estimates for a multilinear regression of the responses in y on the predictors in X. X is an n-by-p matrix of p predictors at each of n observations. y is an n-by-1 vector of observed responses.
It is not exactly stated, but the example in the help docs using the carsmall inbuilt dataset shows you how to set this up. For your case, you'd want:
X = [ones(size(x)) x]; % make sure this is 30 x 2
b = regress(y,X); % y should be 30 x 1, b should be 2 x 1
b(1) should then be your m, and b(2) your k.
regress can also provide additional outputs, such as confidence intervals, residuals, statistics such as r-squared, etc. The input remains the same, you'd just change the outputs:
[b,bint,r,rint,stats] = regress(y,X);