pod has unbound PersistentVolumeClaims - kubernetes

When I push my deployments, for some reason, I'm getting the error on my pods:
pod has unbound PersistentVolumeClaims
Here are my YAML below:
This is running locally, not on any cloud solution.
apiVersion: extensions/v1beta1
kind: Deployment
metadata:
annotations:
kompose.cmd: kompose convert
kompose.version: 1.16.0 ()
creationTimestamp: null
labels:
io.kompose.service: ckan
name: ckan
spec:
replicas: 1
strategy: {}
template:
metadata:
creationTimestamp: null
labels:
io.kompose.service: ckan
spec:
containers:
image: slckan/docker_ckan
name: ckan
ports:
- containerPort: 5000
resources: {}
volumeMounts:
- name: ckan-home
mountPath: /usr/lib/ckan/
subPath: ckan
volumes:
- name: ckan-home
persistentVolumeClaim:
claimName: ckan-pv-home-claim
restartPolicy: Always
status: {}
kind: PersistentVolumeClaim
apiVersion: v1
metadata:
name: ckan-pv-home-claim
labels:
io.kompose.service: ckan
spec:
storageClassName: ckan-home-sc
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 100Mi
volumeMode: Filesystem
---
kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
name: ckan-home-sc
provisioner: kubernetes.io/no-provisioner
mountOptions:
- dir_mode=0755
- file_mode=0755
- uid=1000
- gid=1000

You have to define a PersistentVolume providing disc space to be consumed by the PersistentVolumeClaim.
When using storageClass Kubernetes is going to enable "Dynamic Volume Provisioning" which is not working with the local file system.
To solve your issue:
Provide a PersistentVolume fulfilling the constraints of the claim (a size >= 100Mi)
Remove the storageClass from the PersistentVolumeClaim or provide it with an empty value ("")
Remove the StorageClass from your cluster
How do these pieces play together?
At creation of the deployment state-description it is usually known which kind (amount, speed, ...) of storage that application will need.
To make a deployment versatile you'd like to avoid a hard dependency on storage. Kubernetes' volume-abstraction allows you to provide and consume storage in a standardized way.
The PersistentVolumeClaim is used to provide a storage-constraint alongside the deployment of an application.
The PersistentVolume offers cluster-wide volume-instances ready to be consumed ("bound"). One PersistentVolume will be bound to one claim. But since multiple instances of that claim may be run on multiple nodes, that volume may be accessed by multiple nodes.
A PersistentVolume without StorageClass is considered to be static.
"Dynamic Volume Provisioning" alongside with a StorageClass allows the cluster to provision PersistentVolumes on demand.
In order to make that work, the given storage provider must support provisioning - this allows the cluster to request the provisioning of a "new" PersistentVolume when an unsatisfied PersistentVolumeClaim pops up.
Example PersistentVolume
In order to find how to specify things you're best advised to take a look at the API for your Kubernetes version, so the following example is build from the API-Reference of K8S 1.17:
apiVersion: v1
kind: PersistentVolume
metadata:
name: ckan-pv-home
labels:
type: local
spec:
capacity:
storage: 100Mi
hostPath:
path: "/mnt/data/ckan"
The PersistentVolumeSpec allows us to define multiple attributes.
I chose a hostPath volume which maps a local directory as content for the volume. The capacity allows the resource scheduler to recognize this volume as applicable in terms of resource needs.
Additional Resources:
Configure PersistentVolume Guide

If your using rancher k3s kubernetes distribution, set storageClassName to local-path as described in the doc
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: local-path-pvc
namespace: default
spec:
accessModes:
- ReadWriteOnce
storageClassName: local-path
resources:
requests:
storage: 2Gi
To use it on other distributions use https://github.com/rancher/local-path-provisioner

I ran into this issue but I realized that I was creating my PV's with "manual" StorageClass type.
YOUR POD
Expects what kind of storage class?
YOUR PVC Definition
volumeClaimTemplates --> storageClassName : "standard"
PV
spec --> storageClassName : "standard"

In may case the problem was, the wrong name of PersistentVolume specified in PersistentVolumeClaim declaration.
But there might be more reasons to it. Make sure that :
The volumeName name specified in PVC match PV name
The storageClassName name specified in PVC match PV name
The sufficient capacity size is allocated to your resource
The access modes of You PV and PVC are consistent
The number of PV match PVC
For detailed explanation read this article.

We faced a very similar issue today. For us the problem was that there was no CSI driver installed on the nodes. To check the drivers installed, you can use this command:
kubectl get csidriver
Our managed kubernetes clusters v1.25 run in Google Cloud, so for us the solution was to just enable the feature โ€˜Compute Engine persistent disk CSI Driverโ€™

Related

kubernetes storage class node selector

I'm trying to leverage a local volume dynamic provisioner for k8s, Rancher's one, with multiple instances, each with its own storage class so that I can provide multiple types of local volumes based on their performance (e.g. ssd, hdd ,etc).
The underlying infrastructure is not symmetric; some nodes only have ssds, some only hdds, some of them both.
I know that I can hint the scheduler to select the proper nodes by providing node affinity rules for pods.
But, is there a better way to address this problem at the level of provisioner / storage class only ? E.g., make a storage class only available for a subset of the cluster nodes.
I know that I can hint the scheduler to select the proper nodes by
providing node affinity rules for pods.
There is no need to define node affinity rules on Pod level when using local persistent volumes. Node affinity can be specified in PersistentVolume definition.
But, is there a better way to address this problem at the level of
provisioner / storage class only ? E.g., make a storage class only
available for a subset of the cluster nodes.
No, it cannot be specified on a StorageClass level. Neither you can make a StorageClass available only for a subset of nodes.
But when it comes to a provisioner, I would say yes, it should be feasible as one of the major storage provisioner tasks is creating matching PersistentVolume objects in response to PersistentVolumeClaim created by the user. You can read about it here:
Dynamic volume provisioning allows storage volumes to be created
on-demand. Without dynamic provisioning, cluster administrators have
to manually make calls to their cloud or storage provider to create
new storage volumes, and then create PersistentVolume objects to
represent them in Kubernetes. The dynamic provisioning feature
eliminates the need for cluster administrators to pre-provision
storage. Instead, it automatically provisions storage when it is
requested by users.
So looking at the whole volume provision process from the very beginning it looks as follows:
User creates only PersistenVolumeClaim object, where he specifies a StorageClass:
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: myclaim
spec:
accessModes:
- ReadWriteOnce
volumeMode: Filesystem
resources:
requests:
storage: 10Gi
storageClassName: local-storage ### ๐Ÿ‘ˆ
and it can be used in a Pod definition:
apiVersion: v1
kind: Pod
metadata:
name: mypod
spec:
containers:
- name: myfrontend
image: nginx
volumeMounts:
- mountPath: "/var/www/html"
name: mypd
volumes:
- name: mypd
persistentVolumeClaim:
claimName: myclaim ### ๐Ÿ‘ˆ
So in practice, in a Pod definition you need only to specify the proper PVC. No need for defining any node-affinity rules here.
A Pod references a PVC, PVC then references a StorageClass, StorageClass references the provisioner that should be used:
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
name: local-storage
provisioner: kubernetes.io/my-fancy-provisioner ### ๐Ÿ‘ˆ
volumeBindingMode: WaitForFirstConsumer
So in the end it is the task of a provisioner to create matching PersistentVolume object. It can look as follows:
apiVersion: v1
kind: PersistentVolume
metadata:
name: example-pv
spec:
capacity:
storage: 10Gi
volumeMode: Filesystem
accessModes:
- ReadWriteOnce
persistentVolumeReclaimPolicy: Delete
storageClassName: local-storage
local:
path: /var/tmp/test
nodeAffinity: ### ๐Ÿ‘ˆ
required:
nodeSelectorTerms:
- matchExpressions:
- key: kubernetes.io/hostname
operator: In
values:
- ssd-node ### ๐Ÿ‘ˆ
So a Pod which uses myclaim PVC -> which references the local-storage StorageClass -> which selects a proper storage provisioner will be automatically scheduled on the node selected in PV definition created by this provisioner.

How can I mount the same persistent volume on multiple pods?

I have a three node GCE cluster and a single-pod GKE deployment with three replicas. I created the PV and PVC like so:
# Create a persistent volume for web content
apiVersion: v1
kind: PersistentVolume
metadata:
name: nginx-content
labels:
type: local
spec:
capacity:
storage: 5Gi
accessModes:
- ReadOnlyMany
hostPath:
path: "/usr/share/nginx/html"
--
# Request a persistent volume for web content
kind: PersistentVolumeClaim
apiVersion: v1
metadata:
name: nginx-content-claim
annotations:
volume.alpha.kubernetes.io/storage-class: default
spec:
accessModes: [ReadOnlyMany]
resources:
requests:
storage: 5Gi
They are referenced in the container spec like so:
spec:
containers:
- image: launcher.gcr.io/google/nginx1
name: nginx-container
volumeMounts:
- name: nginx-content
mountPath: /usr/share/nginx/html
ports:
- containerPort: 80
volumes:
- name: nginx-content
persistentVolumeClaim:
claimName: nginx-content-claim
Even though I created the volumes as ReadOnlyMany, only one pod can mount the volume at any given time. The rest give "Error 400: RESOURCE_IN_USE_BY_ANOTHER_RESOURCE". How can I make it so all three replicas read the same web content from the same volume?
First I'd like to point out one fundamental discrapency in your configuration. Note that when you use your PersistentVolumeClaim defined as in your example, you don't use your nginx-content PersistentVolume at all. You can easily verify it by running:
kubectl get pv
on your GKE cluster. You'll notice that apart from your manually created nginx-content PV, there is another one, which was automatically provisioned based on the PVC that you applied.
Note that in your PersistentVolumeClaim definition you're explicitely referring the default storage class which has nothing to do with your manually created PV. Actually even if you completely omit the annotation:
annotations:
volume.alpha.kubernetes.io/storage-class: default
it will work exactly the same way, namely the default storage class will be used anyway. Using the default storage class on GKE means that GCE Persistent Disk will be used as your volume provisioner. You can read more about it here:
Volume implementations such as gcePersistentDisk are configured
through StorageClass resources. GKE creates a default StorageClass for
you which uses the standard persistent disk type (ext4). The default
StorageClass is used when a PersistentVolumeClaim doesn't specify a
StorageClassName. You can replace the provided default StorageClass
with your own.
But let's move on to the solution of the problem you're facing.
Solution:
First, I'd like to emphasize you don't have to use any NFS-like filesystems to achive your goal.
If you need your PersistentVolume to be available in ReadOnlyMany mode, GCE Persistent Disk is a perfect solution that entirely meets your requirements.
It can be mounted in ro mode by many Pods at the same time and what is even more important by many Pods, scheduled on different GKE nodes. Furthermore it's really simple to configure and it works on GKE out of the box.
In case you want to use your storage in ReadWriteMany mode, I agree that something like NFS may be the only solution as GCE Persistent Disk doesn't provide such capability.
Let's take a closer look how we can configure it.
We need to start from defining our PVC. This step was actually already done by yourself but you got lost a bit in further steps. Let me explain how it works.
The following configuration is correct (as I mentioned annotations section can be omitted):
# Request a persistent volume for web content
kind: PersistentVolumeClaim
apiVersion: v1
metadata:
name: nginx-content-claim
spec:
accessModes: [ReadOnlyMany]
resources:
requests:
storage: 5Gi
However I'd like to add one important comment to this. You said:
Even though I created the volumes as ReadOnlyMany, only one pod can
mount the volume at any given time.
Well, actually you didn't. I know it may seem a bit tricky and somewhat surprising but this is not the way how defining accessModes really works. In fact it's a widely misunderstood concept. First of all you cannot define access modes in PVC in a sense of putting there the constraints you want. Supported access modes are inherent feature of a particular storage type. They are already defined by the storage provider.
What you actually do in PVC definition is requesting a PV that supports the particular access mode or access modes. Note that it's in a form of a list which means you may provide many different access modes that you want your PV to support.
Basically it's like saying: "Hey! Storage provider! Give me a volume that supports ReadOnlyMany mode." You're asking this way for a storage that will satisfy your requirements. Keep in mind however that you can be given more than you ask. And this is also our scenario when asking for a PV that supports ReadOnlyMany mode in GCP. It creates for us a PersistentVolume which meets our requirements we listed in accessModes section but it also supports ReadWriteOnce mode. Although we didn't ask for something that also supports ReadWriteOnce you will probably agree with me that storage which has a built-in support for those two modes fully satisfies our request for something that supports ReadOnlyMany. So basically this is the way it works.
Your PV that was automatically provisioned by GCP in response for your PVC supports those two accessModes and if you don't specify explicitely in Pod or Deployment definition that you want to mount it in read-only mode, by default it is mounted in read-write mode.
You can easily verify it by attaching to the Pod that was able to successfully mount the PersistentVolume:
kubectl exec -ti pod-name -- /bin/bash
and trying to write something on the mounted filesystem.
The error message you get:
"Error 400: RESOURCE_IN_USE_BY_ANOTHER_RESOURCE"
concerns specifically GCE Persistent Disk that is already mounted by one GKE node in ReadWriteOnce mode and it cannot be mounted by another node on which the rest of your Pods were scheduled.
If you want it to be mounted in ReadOnlyMany mode, you need to specify it explicitely in your Deployment definition by adding readOnly: true statement in the volumes section under Pod's template specification like below:
apiVersion: apps/v1
kind: Deployment
metadata:
name: nginx-deployment
labels:
app: nginx
spec:
replicas: 3
selector:
matchLabels:
app: nginx
template:
metadata:
labels:
app: nginx
spec:
containers:
- name: nginx
image: nginx:1.14.2
ports:
- containerPort: 80
volumeMounts:
- mountPath: "/usr/share/nginx/html"
name: nginx-content
volumes:
- name: nginx-content
persistentVolumeClaim:
claimName: nginx-content-claim
readOnly: true
Keep in mind however that to be able to mount it in readOnly mode, first we need to pre-populate such volume with data. Otherwise you'll see another error message, saying that unformatted volume cannot be mounted in read only mode.
The easiest way to do it is by creating a single Pod which will serve only for copying data which was already uploaded to one of our GKE nodes to our destination PV.
Note that pre-populating PersistentVolume with data can be done in many different ways. You can mount in such Pod only your PersistentVolume that you will be using in your Deployment and get your data using curl or wget from some external location saving it directly on your destination PV. It's up to you.
In my example I'm showing how to do it using additional local volume that allows us to mount into our Pod a directory, partition or disk (in my example I use a directory /var/tmp/test located on one of my GKE nodes) available on one of our kubernetes nodes. It's much more flexible solution than hostPath as we don't have to care about scheduling such Pod to particular node, that contains the data. Specific node affinity rule is already defined in PersistentVolume and Pod is automatically scheduled on specific node.
To create it we need 3 things:
StorageClass:
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
name: local-storage
provisioner: kubernetes.io/no-provisioner
volumeBindingMode: WaitForFirstConsumer
PersistentVolume definition:
apiVersion: v1
kind: PersistentVolume
metadata:
name: example-pv
spec:
capacity:
storage: 10Gi
volumeMode: Filesystem
accessModes:
- ReadWriteOnce
persistentVolumeReclaimPolicy: Delete
storageClassName: local-storage
local:
path: /var/tmp/test
nodeAffinity:
required:
nodeSelectorTerms:
- matchExpressions:
- key: kubernetes.io/hostname
operator: In
values:
- <gke-node-name>
and finally PersistentVolumeClaim:
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: myclaim
spec:
accessModes:
- ReadWriteOnce
volumeMode: Filesystem
resources:
requests:
storage: 10Gi
storageClassName: local-storage
Then we can create our temporary Pod which will serve only for copying data from our GKE node to our GCE Persistent Disk.
apiVersion: v1
kind: Pod
metadata:
name: mypod
spec:
containers:
- name: myfrontend
image: nginx
volumeMounts:
- mountPath: "/mnt/source"
name: mypd
- mountPath: "/mnt/destination"
name: nginx-content
volumes:
- name: mypd
persistentVolumeClaim:
claimName: myclaim
- name: nginx-content
persistentVolumeClaim:
claimName: nginx-content-claim
Paths you can see above are not really important. The task of this Pod is only to allow us to copy our data to the destination PV. Eventually our PV will be mounted in completely different path.
Once the Pod is created and both volumes are successfully mounted, we can attach to it by running:
kubectl exec -ti my-pod -- /bin/bash
Withing the Pod simply run:
cp /mnt/source/* /mnt/destination/
That's all. Now we can exit and delete our temporary Pod:
kubectl delete pod mypod
Once it is gone, we can apply our Deployment and our PersistentVolume finally can be mounted in readOnly mode by all the Pods located on various GKE nodes:
apiVersion: apps/v1
kind: Deployment
metadata:
name: nginx-deployment
labels:
app: nginx
spec:
replicas: 3
selector:
matchLabels:
app: nginx
template:
metadata:
labels:
app: nginx
spec:
containers:
- name: nginx
image: nginx:1.14.2
ports:
- containerPort: 80
volumeMounts:
- mountPath: "/usr/share/nginx/html"
name: nginx-content
volumes:
- name: nginx-content
persistentVolumeClaim:
claimName: nginx-content-claim
readOnly: true
Btw. if you are ok with the fact that your Pods will be scheduled only on one particular node, you can give up on using GCE Persistent Disk at all and switch to the above mentioned local volume. This way all your Pods will be able not only to read from it but also to write to it at the same time. The only caveat is that all those Pods will be running on a single node.
You can achieve this with a NFS like file system. On Google Cloud, Filestore is the right product for this (NFS managed). You have a tutorial here for achieving your configuration
You will need to use a shared volume claim with ReadWriteMany (RWX) type if you want to share the volume across different nodes and provide highly scalable solution. Like using NFS server.
You can find out how to deploy an NFS server here:
https://www.shebanglabs.io/run-nfs-server-on-ubuntu-20-04/
And then you can mount volumes (directories from NFS server) as follows:
https://www.shebanglabs.io/how-to-set-up-read-write-many-rwx-persistent-volumes-with-nfs-on-kubernetes/
I've used such a way to deliver shared static content between +8 k8s deployments (+200 pods) serving 1 Billion requests a month over Nginx. and it did work perfectly with that NFS setup :)
Google provides NFS like filesystem called as Google Cloud Filestore. You can mount that on multiple pods.

How do I put storage quota limitation on storage class

I want to dynamically create PeristentVolumes and mount them into my pod using PVCs. SO, I am following kubernetes Dynamic Provisioning concept. I am creating PersistentVolumeClaim using Kubernetes StorageClasses.
I am creating PVC using StorageClasses like this.
kind: PersistentVolumeClaim
apiVersion: v1
metadata:
name: test-pvc
namespace: test
spec:
accessModes:
- ReadWriteMany
storageClassName: test-sc
resources:
requests:
storage: 100M
Now, I want to put restriction on StorageClasses test-sc to limit storage usage. In any case, the sum of storage used by PVCs which are created using StorageClass test-sc across all namespaces should not exceed 150M.
I am able to limit the storage usage of PVCs created using StorageClass test-sc for single namespace as following.
apiVersion: v1
kind: ResourceQuota
metadata:
name: quota-limit-sc
namespace: test
spec:
hard:
secure-maprfs.storageclass.storage.k8s.io/requests.storage: 150Mi
How do I put this limitation on Cluster Level i.e. on Storage Classes ??
This is applicable per namespace only.
You will have to define quotas for all your namespaces

How to specify a storage class to user pvc in kubeflow

I am trying to attach a storage class to all the PVC request created by individual user pods for jupyter notebooks in kubeflow.
I tried editing some values and specify storage_class. but none of it is working, whenever a new pvc comes up it doesnot come with a storage class name.
The desired result is whenever a pvc of user pods comes, it should have the name of storage class attached with it. Kindly help with this. I am stuck from last day
you need to have a default storage class in your cluster, so if a pvc does not specify any storage class then default one would be selected.
List the StorageClasses in your cluster:
kubectl get storageclass
Mark a StorageClass as default:
set the annotation storageclass.kubernetes.io/is-default-class=true.
kubectl patch storageclass <your-class-name> -p '{"metadata": {"annotations":{"storageclass.kubernetes.io/is-default-class":"true"}}}'
Here are the detail steps change-default-storage-class
Basing on documentation
While PersistentVolumeClaims allow a user to consume abstract storage resources, it is common that users need PersistentVolumes with varying properties, such as performance, for different problems.
Cluster administrators need to be able to offer a variety of PersistentVolumes that differ in more ways than just size and access modes, without exposing users to the details of how those volumes are implemented. For these needs there is the StorageClass resource.
A PersistentVolume (PV) is a piece of storage in the cluster that has been provisioned by an administrator or dynamically provisioned using Storage Classes.
apiVersion: v1
kind: PersistentVolume
metadata:
name: task-pv-volume
labels:
type: local
spec:
storageClassName: <name_of_your_StorageClass>
capacity:
storage: 10Gi
accessModes:
- ReadWriteOnce
hostPath:
path: "/mnt/data"
A PersistentVolumeClaim (PVC) is a request for storage by a user.
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: task-pv-claim
spec:
storageClassName: <name_of_your_StorageClass>
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 3Gi
Then you can create a Pod that uses your PVC as a volume(which uses PV with storageClass)
apiVersion: v1
kind: Pod
metadata:
name: task-pv-pod
spec:
volumes:
- name: task-pv-storage
persistentVolumeClaim:
claimName: task-pv-claim
containers:
- name: task-pv-container
image: nginx
ports:
- containerPort: 80
name: "http-server"
volumeMounts:
- mountPath: "/usr/share/nginx/html"
name: task-pv-storage
Before you are going to create a PV and PVC StorageClass must already exist, if it's not a default one will be used instead.
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
name: <name_of_your_StorageClass>
provisioner: kubernetes.io/aws-ebs
parameters:
type: gp2
reclaimPolicy: Retain
allowVolumeExpansion: true
mountOptions:
- debug
volumeBindingMode: Immediate
You can check your StorageClasses with this command:
kubectl get sc

Kubernetes: PersistentVolume And PersistentVolumeClaim - Sharing Claims

This question is about the behavior of PersistentVolume and PersistentVolumeClaim configurations within Kubernetes. We have read through the documentation and are left with a few lingering questions.
We are using Azure Kubernetes Service to host our cluster and we want to provide a shared persistent storage backend for many of our Pods. We are planning on using PersistentVolumes to accomplish this.
In this scenario, we want to issue a PersistentVolume backed by an AzureFile storage resource. We will deploy Jenkins to our cluster and store the jenkins_home directory in the PersistentVolume so that our instance can survive pod and node failures. We will be running multiple Master Jenkins nodes, all configured with a similar deployment yaml.
We have created all the needed storage accounts and applicable shares ahead of time, as well as the needed secrets.
First, we issued the following PersistentVolume configuration;
apiVersion: v1
kind: PersistentVolume
metadata:
name: jenkins-azure-file-share
labels:
usage: jenkins-azure-file-share
spec:
capacity:
storage: 100Gi
accessModes:
- ReadWriteMany
persistentVolumeReclaimPolicy: Retain
azureFile:
secretName: azure-file-secret
shareName: jenkins
readOnly: false
mountOptions:
- dir_mode=0777
- file_mode=0777
- uid=1000
- gid=1000
Following that, we then issued the following PersistentVolumeClaim configuration;
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: jenkins-file-claim
annotations:
volume.beta.kubernetes.io/storage-class: ""
spec:
accessModes:
- ReadWriteMany
resources:
requests:
storage: 10Gi
volumeName: "jenkins-azure-file-share"
Next, we use this claim within our deployments in the following manner;
apiVersion: extensions/v1beta1
kind: Deployment
metadata:
name: jenkins-instance-name
spec:
replicas: 1
template:
metadata:
labels:
role: jenkins
app: jenkins-instance-name
spec:
containers:
- name: jenkins-instance-name
image: ContainerRegistry.azurecr.io/linux/jenkins_master:latest
ports:
- name: jenkins-port
containerPort: 8080
volumeMounts:
- name: jenkins-home
mountPath: /var/jenkins_home
subPath: "jenkins-instance-name"
volumes:
- name: jenkins-home
persistentVolumeClaim:
claimName: "jenkins-file-claim"
imagePullSecrets:
- name: ImagePullSecret
This is all working as expected. We have deployed multiple Jenkins Masters to our Kubernetes cluster and each one is correctly allocating a new folder on the share specific to each master instance.
Now for my questions
The PersistentVolume is configured with 100Gig of Storage. Does this mean that Kubernetes will only allow a maximum of 100Gig of total storage in this volume?
When the PersistentVolumeClaim is bound to the PersistentVolume, the PersistentVolumeClaim seems to show that it has 100Gig of total storage available, even though the PersistentVolumeClaim was configured for 10Gig of storage;
C:\ashley\scm\kubernetes>kubectl get pv
NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON AGE
jenkins-azure-file-share 100Gi RWX Retain Bound default/jenkins-file-claim 2d
C:\ashley\scm\kubernetes>kubectl get pvc
NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE
jenkins-homes-file-claim Bound jenkins-azure-file-share 100Gi RWX 2d
Is this just bad output from the get pvc command or am I misinterpreting the output of the get pvc command?
When sharing a PersistentVolumeClaim in this way;
Does each deployment ONLY have access to the configured maximum of 10Gig of storage from the PersistentVolume's 100Gig capacity?
Or, does each deployment have access to its own 10Gig slice of the total 100Gig of storage configured for the PersistentVolume?
With this configuration, what happens when a single PersistentVolumeClaim capacity gets fully utilized? Do all the Deployments using this single PersistentVolumeClaim stop working?
So for the pvc it is definitely the case that it has only 10Gig available with this config. For the pv I assume it is the same but in this case I don't know for sure but should be, because of consistency. And it stops working if any of this limits are reached so if you have 11 Jenkins running it will even fail although you not reached the limit on a single pvc.