Play Framework Database Related endpoints hang after some up time - scala

I have situation which is almost identical to the one described here: Play framework resource starvation after a few days
My application is simple, Play 2.6 + PostgreSQL + Slick 3.
Also, DB retrieval operations are Slick only and simple.
Usage scenario is that data comes in through one endpoint, gets stored into DB (there are some actors storing some data in async fashion which can fail with default strategy) and is served through rest endpoints.
So far so good.
After few days, every endpoint that has anything to do with database stops responding. Application is server on t3-medium on a single instance connected to RDS instance. Connection count to RDS is always the same and stable, mostly idling.
What I have also noticed is that database actually gets called and query gets executed, but request never ends or gets any data.
Simplest endpoint (POST) is for posting feedback - basically one liner:
feedbackService.storeFeedback(feedback.deviceId, feedback.message).map(_ => Success)
This Success thing is wrapper around Ok("something") so no magic there.
Feedback Service stores one record in DB in a Slick preferred way, nothing crazy there as well.
Once feedback post is called, I notice in psql client that INSERT query has been executed and data really ends up in database, but HTTP request never ends and no success data gets returned. In parallel, calling non DB related endpoints which do return some values like status endpoint goes through without problems.
Production logs don't show anything and restarting helps for a day or two.
I suppose some kind of resource starvation is happening, but which and where is currently beyond me.

Related

How to keep state consistent across distributed systems

When building distributed systems, it must be ensured the client and the server eventually ends up with consistent view of the data they are operating on, i.e they never get out of sync. Extra care is needed, because network can not be considered reliable. In other words, in the case of network failure, client never knows if the operation was successful, and may decide to retry the call.
Consider a microservice, which exposes simple CRUD API, and unbounded set of clients, maintained in-house by the same team, by different teams and by different companies also.
In the example, client request a creation of new entity, which the microservice successfully creates and persists, but the network fails and client connection times out. The client will most probably retry, unknowingly persisting the same entity second time. Here is one possible solution to this I came up with:
Use client-generated identifier to prevent duplicate post
This could mean the primary key as it is, the half of the client and server -generated composite key, or the token issued by the service. A service would either persist the entity, or reply with OK message in the case the entity with that identifier is already present.
But there is more to this: What if the client gives up after network failure (but entity got persisted), mutates it's internal view of the entity, and later decides to persist it in the service with the same id. At this point and generally, would it be reasonable for the service just silently:
Update the existing entity with the state that client posted
Or should the service answer with some more specific status code about what happened? The point is, developer of the service couldn't really influence the client design solutions.
So, what are some sensible practices to keep the state consistent across distributed systems and avoid most common pitfalls in the case of network and system failure?
There are some things that you can do to minimize the impact of the client-server out-of-sync situation.
The first measure that you can take is to let the client generate the entity IDs, for example by using GUIDs. This prevents the server to generate a new entity every time the client retries a CreateEntityCommand.
In addition, you can make the command handing idempotent. This means that if the server receives a second CreateEntityCommand, it just silently ignores it (i.e. it does not throw an exception). This depends on every use case; some commands cannot be made idempotent (like updateEntity).
Another thing that you can do is to de-duplicate commands. This means that every command that you send to a server must be tagged with an unique ID. This can also be a GUID. When the server receives a command with an ID that it already had processed then it ignores it and gives a positive response (i.e. 200), maybe including some meta-information about the fact that the command was already processed. The command de-duplication can be placed on top of the stack, as a separate layer, independent of the domain (i.e. in front of the Application layer).

hazelcast spring-data write-through

I am using Spring-Boot, Spring-Data/JPA with Hazelcast client/server topology. In parts of my test application, I am calculating time when performing CRUD operations on the client side (the server is the one interacting with a relational db). I configured the map(Store) to be write-behind by setting write-delay-seconds to 10.
Spring-Data's save() returns the persisted entity. In the client app, therefore, the application flow will be blocked until the (server) returns the persisted entity.
Would like to know is there is an alternative in which case the client does NOT have to wait for the entity to persist. Was under the impression that once new data is stored in the Map, persisting to the backed happens asynchronously -> the client app would NOT have to wait.
Map config in hazelast.xml:
<map name="com.foo.MyMap">
<map-store enabled="true" initial-mode="EAGER">
<class-name>com.foo.MyMapStore</class-name>
<write-delay-seconds>10</write-delay-seconds>
</map-store>
</map>
#NeilStevenson I don't find your response particularly helpful. I asked on an earlier post about where and how to generate the Map keys. You pointed me to the documentation which fails to shed any light on this topic. Same goes for the hazelcast (and other) examples.
The point of having the cache in the 1st place, is to avoid hitting the database. When we add data (via save()), we need to also generate an unique key for the Map. This key also becomes the Entity.Id in the database table. Since, again, its the hazelcast client that generates these Ids, there is no need to wait for the record to be persisted in the backend.
The only reason to wait for save() to return the persisted object would be to catch any exceptions NOT because of the ID.
That unfortunately is how it is meant to work, see https://docs.spring.io/spring-data/commons/docs/current/api/org/springframework/data/repository/CrudRepository.html#save-S-.
Potentially the external store mutates the saved entry in some way.
Although you know it won't do this, there isn't a variant on the save defined.
So the answer seems to be this is not currently available in the general purpose Spring repository definition. Why not raise a feature request for the Spring Data team ?

Avoid duplicate POSTs with REST

I have been using POST in a REST API to create objects. Every once in a while, the server will create the object, but the client will be disconnected before it receives the 201 Created response. The client only sees a failed POST request, and tries again later, and the server happily creates a duplicate object...
Others must have had this problem, right? But I google around, and everyone just seems to ignore it.
I have 2 solutions:
A) Use PUT instead, and create the (GU)ID on the client.
B) Add a GUID to all objects created on the client, and have the server enforce their UNIQUE-ness.
A doesn't match existing frameworks very well, and B feels like a hack. How does other people solve this, in the real world?
Edit:
With Backbone.js, you can set a GUID as the id when you create an object on the client. When it is saved, Backbone will do a PUT request. Make your REST backend handle PUT to non-existing id's, and you're set.
Another solution that's been proposed for this is POST Once Exactly (POE), in which the server generates single-use POST URIs that, when used more than once, will cause the server to return a 405 response.
The downsides are that 1) the POE draft was allowed to expire without any further progress on standardization, and thus 2) implementing it requires changes to clients to make use of the new POE headers, and extra work by servers to implement the POE semantics.
By googling you can find a few APIs that are using it though.
Another idea I had for solving this problem is that of a conditional POST, which I described and asked for feedback on here.
There seems to be no consensus on the best way to prevent duplicate resource creation in cases where the unique URI generation is unable to be PUT on the client and hence POST is needed.
I always use B -- detection of dups due to whatever problem belongs on the server side.
Detection of duplicates is a kludge, and can get very complicated. Genuine distinct but similar requests can arrive at the same time, perhaps because a network connection is restored. And repeat requests can arrive hours or days apart if a network connection drops out.
All of the discussion of identifiers in the other anwsers is with the goal of giving an error in response to duplicate requests, but this will normally just incite a client to get or generate a new id and try again.
A simple and robust pattern to solve this problem is as follows: Server applications should store all responses to unsafe requests, then, if they see a duplicate request, they can repeat the previous response and do nothing else. Do this for all unsafe requests and you will solve a bunch of thorny problems. Repeat DELETE requests will get the original confirmation, not a 404 error. Repeat POSTS do not create duplicates. Repeated updates do not overwrite subsequent changes etc. etc.
"Duplicate" is determined by an application-level id (that serves just to identify the action, not the underlying resource). This can be either a client-generated GUID or a server-generated sequence number. In this second case, a request-response should be dedicated just to exchanging the id. I like this solution because the dedicated step makes clients think they're getting something precious that they need to look after. If they can generate their own identifiers, they're more likely to put this line inside the loop and every bloody request will have a new id.
Using this scheme, all POSTs are empty, and POST is used only for retrieving an action identifier. All PUTs and DELETEs are fully idempotent: successive requests get the same (stored and replayed) response and cause nothing further to happen. The nicest thing about this pattern is its Kung-Fu (Panda) quality. It takes a weakness: the propensity for clients to repeat a request any time they get an unexpected response, and turns it into a force :-)
I have a little google doc here if any-one cares.
You could try a two step approach. You request an object to be created, which returns a token. Then in a second request, ask for a status using the token. Until the status is requested using the token, you leave it in a "staged" state.
If the client disconnects after the first request, they won't have the token and the object stays "staged" indefinitely or until you remove it with another process.
If the first request succeeds, you have a valid token and you can grab the created object as many times as you want without it recreating anything.
There's no reason why the token can't be the ID of the object in the data store. You can create the object during the first request. The second request really just updates the "staged" field.
Server-issued Identifiers
If you are dealing with the case where it is the server that issues the identifiers, create the object in a temporary, staged state. (This is an inherently non-idempotent operation, so it should be done with POST.) The client then has to do a further operation on it to transfer it from the staged state into the active/preserved state (which might be a PUT of a property of the resource, or a suitable POST to the resource).
Each client ought to be able to GET a list of their resources in the staged state somehow (maybe mixed with other resources) and ought to be able to DELETE resources they've created if they're still just staged. You can also periodically delete staged resources that have been inactive for some time.
You do not need to reveal one client's staged resources to any other client; they need exist globally only after the confirmatory step.
Client-issued Identifiers
The alternative is for the client to issue the identifiers. This is mainly useful where you are modeling something like a filestore, as the names of files are typically significant to user code. In this case, you can use PUT to do the creation of the resource as you can do it all idempotently.
The down-side of this is that clients are able to create IDs, and so you have no control at all over what IDs they use.
There is another variation of this problem. Having a client generate a unique id indicates that we are asking a customer to solve this problem for us. Consider an environment where we have a publicly exposed APIs and have 100s of clients integrating with these APIs. Practically, we have no control over the client code and the correctness of his implementation of uniqueness. Hence, it would probably be better to have intelligence in understanding if a request is a duplicate. One simple approach here would be to calculate and store check-sum of every request based on attributes from a user input, define some time threshold (x mins) and compare every new request from the same client against the ones received in past x mins. If the checksum matches, it could be a duplicate request and add some challenge mechanism for a client to resolve this.
If a client is making two different requests with same parameters within x mins, it might be worth to ensure that this is intentional even if it's coming with a unique request id.
This approach may not be suitable for every use case, however, I think this will be useful for cases where the business impact of executing the second call is high and can potentially cost a customer. Consider a situation of payment processing engine where an intermediate layer ends up in retrying a failed requests OR a customer double clicked resulting in submitting two requests by client layer.
Design
Automatic (without the need to maintain a manual black list)
Memory optimized
Disk optimized
Algorithm [solution 1]
REST arrives with UUID
Web server checks if UUID is in Memory cache black list table (if yes, answer 409)
Server writes the request to DB (if was not filtered by ETS)
DB checks if the UUID is repeated before writing
If yes, answer 409 for the server, and blacklist to Memory Cache and Disk
If not repeated write to DB and answer 200
Algorithm [solution 2]
REST arrives with UUID
Save the UUID in the Memory Cache table (expire for 30 days)
Web server checks if UUID is in Memory Cache black list table [return HTTP 409]
Server writes the request to DB [return HTTP 200]
In solution 2, the threshold to create the Memory Cache blacklist is created ONLY in memory, so DB will never be checked for duplicates. The definition of 'duplication' is "any request that comes into a period of time". We also replicate the Memory Cache table on the disk, so we fill it before starting up the server.
In solution 1, there will be never a duplicate, because we always check in the disk ONLY once before writing, and if it's duplicated, the next roundtrips will be treated by the Memory Cache. This solution is better for Big Query, because requests there are not imdepotents, but it's also less optmized.
HTTP response code for POST when resource already exists

NSMutableURLRequest on succession of another NSMutableURLRequest's success

Basically, I want to implement SYNC functionality; where, if internet connection is not available, data gets stored on local sqlite database. Whenever, internet connection is available, SYNC gets into the action.
Now, Say for example; 5 records are stored locally, and then internet connection is available. I want the server to be updated. So, What I do currently is:
Post first record to the server.
Wait for the success of first request.
Post local NSNotification to routine, that the first record has been updated on server & now second request can go.
The routine fires the second post request on server and so on...
Question: Is this approach right and efficient enough to implement SYNC functionality; OR anything I should change into it ??
NOTE: Records to be SYNC will have no limit in numbers.
Well it depends on the requirements on the data that you save. If it is just for backup then you should be fine.
If the 5 records are somehow dependent on each other and you need to access this data from another device/application you should take care on the server side that either all 5 records are written or none. Otherwise you will have an inconsistent state if only 3 get written.
If other users are also reading / writing those data concurrently on the server then you need to implement some kind of lock on all records before writing and also decide how to handle conflicts when someone attempts to overwrite somebody else changes.

How to guard against repeated request?

we have a button in a web game for the users to collect reward. That should only be clicked once, and upon receiving the request, we'll mark it collected in DB.
we've already blocked the buttons in the client from repeated clicking. But that won't help if people resend the package multiple times to our server in short period of time.
what I want is a method to block this from server side.
we're using Playframework 2 (2.0.3-RC2) for server side and so far it's stateless, I'm tempted to use a Set to guard like this:
if processingSet has userId then BadRequest
else put userId in processingSet and handle request
after that remove userId from that Set
but then I'd have to face problem like Updating Scala collections thread-safely and still fail to block the user once we have more than one server behind load balancing.
one possibility I'm thinking about is to have a table in DB in place of the processingSet above, but that would incur 1+ DB operation per request, are there any better solution~?
thanks~
Additional DB operation is relatively 'cheap' solution in that case. You should use it if you'e planning to save the buttons state permanently.
If the button is disabled only for some period of time (for an example until the game is over) you can also consider using the cache API however keep in mind that's not dedicated for solutions which should be stored for long time (it should not be considered as DB alternative).
Given that you're using Mongo and so don't have transactions spanning separate collections, I think you can probably implement this guard using an atomic operation - namely "Update if current", which is effectively CompareAndSwap.
Assuming you've got a collection like "rewards" which has a "collected" attribute, you can update the collected flag to true only if it is currently false and if that operation doesn't fail you can proceed to apply the reward knowing that for any other requests the same operation will fail.