As I read more and more regarding actor pattern in stateful service, I am not convinced why Actor pattern is good solution with stateful services.
Most of the use cases talk about single-threaded, state managment of actors with short duration of operation in each actor, best scenarios would be small sized calculation in each actor with big numbers in actors operating in parallel.
In such scenarios, the bottle neck would be write operations from lets say millions of actors to the DB. The argument would be storing the states or small sized outputs from each actor to its own state manager or reliable collections such as reliable dictionaries, but still that is different from true stateful service using database.
I think this confuses use case recommendation of stateful services relying on DB vs. true actor patterns.
It would be great if someone can help me understanding what would be good use case of reliable actors with database in stateful service or please correct me if I am not understanding some aspects of reliable actors correct.
Related
Hi so I know that shared state is highly discouraged in Akka, but I have the following dilema:
I have one actor managing many child actors. The child actors all write onto their own state. But the managing actors might issue different messages to its children depending on their states and relations to each other. So I need a state that is readable by the managing actor and writable by the child actor. Are there any good patterns/practices for this kind of use case?
Thanks!
i am new to scala actor programming. i encountered some questions when learning. please give me some help.
Q1. As i learned, messages in mailbox are processed by actor. But actually, the processing is executed by an underlying threadpool. then, if we implement some concurrent jobs by actor model and original java multi-thread model, the efficiency should not have much differency. am i right?
Q2. is akka actor suitable for online serving system? as i know, in a actor system, we have some extra overhead such as message enqueue/dequeue
Q3. akka provides an actor programming paradigm. it reduces issues we may make(such as deadlock ), be easy to scale up/down. if in identical condition, we can not count on actor to make our system better than that implemented by java multi-thread model, can we?
Overall, yes it is suitable.
A1. The most likely efficiency gain is from re-use of the threads in the pool. That is, creation of actors is cheaper than creation of threads.
A2. There is overhead from most abstractions; mailbox processing is no exception. Still, it is not nearly enough overhead to make a blanket statement that akka is not suitable for near-realtime systems.
A3. No, you cannot count on Akka to automatically make things better. The hope is that it will enable you to reason about concurrency in a way that helps you build a scalable system.
As Scala provides a great suite to deal with concurrency (Akka, parallel collections, futures and so on) it also leaves me a bit puzzled. Is there some kind of guide line when to use what? Some kind of best practices?
First of all, concurrency != parallelism. The latter can be employed for problems which you reason about essentially in a sequential manner, but which can be efficiently partitioned into chunks which can be independently processed (before being put together again in the end). For example, mapping and filtering a collection, that would be a scenario for parallel collections.
Some others have reasoned about actors versus futures. In short, actors are more OO in the sense that each actor can encapsulate its own internal state, they are more like black boxes. Also actor concurrency is nondeterministic, whereas dataflow and futures are deterministic. Actors are a natural choice when you want to distribute tasks across multiple computers. Actors can accept multiple types of messages, whereas futures allow function composition over one specific type. (This is simplified, as Akka now has typed channels, which I guess makes it more composable). Actors would be suitable for services which wait for requests, whereas futures can be thought of as lazy answers.
If you have multiple concurrent threads, software transactional memory (STM) is also a useful abstraction. STM doesn't manage threadpools or concurrent tasks by itself, but when combined with them, it handles mutable state in a safe manner.
I've read Reactive Manifesto for a couple of times and tried to wrap my head around all this reactive, async, non-blocking stuff. It's clear how to make scalable systems on top of Actors, but will i get the same effect, in term of scalability, asynchronous execution execution if i would actively use scala Future all over my code, every method would either accept or return a Future. Would such service be scalable and responsive?. Lets say that in this question i'm not much interested in event-driven and resilient part of the service.
This answer reflects my experience using Akka in Scala and its Actor and Future types. I don't consider myself an expert, yet, but I've done a few systems using these libraries and feel I am beginning to develop a sense for how to use them.
The choice of using an Actor vs. a Future is about the nature of the concurrency you require. Futures compose monadically and in DAG-structured graphs, making certain computational structures very elegantly composed. But they have severe limitations. Basically, the computation that is performed concurrently within a Future must be self-contained (or at most reference only immutable external state) or you have not solved the problem of inter-thread interference with all the attendant risks such as deadlock, race conditions, unpredictable behavior or data structure corruption.
When your computation involves long-lived, mutable state, an Actor encapsulates that securely preventing corruption and race conditions. On the other hand, actors are not composable, but they do provide a lot of flexibility in how you construct networks of interacting computations. This is true only providing you don't limit actor responses to always and only sending them (the response to a request) back to the actor from which the request was received. If you only send responses to the requesting actor, you're limited to a tree-structured pattern of inter-actor interaction.
In any real, non-trivial system, you're very likely to use both formalisms, Future and Actor.
I'm new to the Akka framework and I'm building an HTTP server application on top of Netty + Akka.
My idea so far is to create an actor for each type of request. E.g. I would have an actor for a POST to /my-resource and another actor for a GET to /my-resource.
Where I'm confused is how I should go about actor creation? Should I:
Create a new actor for every request (by this I mean for every request should I do a TypedActor.newInstance() of the appropriate actor)? How expensive is it to create a new actor?
Create one instance of each actor on server start up and use that actor instance for every request? I've read that an actor can only process one message at a time, so couldn't this be a bottle neck?
Do something else?
Thanks for any feedback.
Well, you create an Actor for each instance of mutable state that you want to manage.
In your case, that might be just one actor if my-resource is a single object and you want to treat each request serially - that easily ensures that you only return consistent states between modifications.
If (more likely) you manage multiple resources, one actor per resource instance is usually ideal unless you run into many thousands of resources. While you can also run per-request actors, you'll end up with a strange design if you don't think about the state those requests are accessing - e.g. if you just create one Actor per POST request, you'll find yourself worrying how to keep them from concurrently modifying the same resource, which is a clear indication that you've defined your actors wrongly.
I usually have fairly trivial request/reply actors whose main purpose it is to abstract the communication with external systems. Their communication with the "instance" actors is then normally limited to one request/response pair to perform the actual action.
If you are using Akka, you can create an actor per request. Akka is extremely slim on resources and you can create literarily millions of actors on an pretty ordinary JVM heap. Also, they will only consume cpu/stack/threads when they actually do something.
A year ago I made a comparison between the resource consumption of the thread-based and event-based standard actors. And Akka is even better than the event-base.
One of the big points of Akka in my opinion is that it allows you to design your system as "one actor per usage" where earlier actor systems often forced you to do "use only actors for shared services" due to resource overhead.
I would recommend that you go for option 1.
Options 1) or 2) have both their drawbacks. So then, let's use options 3) Routing (Akka 2.0+)
Router is an element which act as a load balancer, routing the requests to other Actors which will perform the task needed.
Akka provides different Router implementations with different logic to route a message (for example SmallestMailboxPool or RoundRobinPool).
Every Router may have several children and its task is to supervise their Mailbox to further decide where to route the received message.
//This will create 5 instances of the actor ExampleActor
//managed and supervised by a RoundRobinRouter
ActorRef roundRobinRouter = getContext().actorOf(
Props.create(ExampleActor.class).withRouter(new RoundRobinRouter(5)),"router");
This procedure is well explained in this blog.
It's quite a reasonable option, but whether it's suitable depends on specifics of your request handling.
Yes, of course it could.
For many cases the best thing to do would be to just have one actor responding to every request (or perhaps one actor per type of request), but the only thing this actor does is to forward the task to another actor (or spawn a Future) which will actually do the job.
For scaling up the serial requests handling, add a master actor (Supervisor) which in turn will delegate to the worker actors (Children) (round-robin fashion).