How to deal with None output of a function in Scala? - scala

I have the following function:
def getData(spark: SparkSession,
indices: Option[String]): Option[DataFrame] = {
indices.map{
ind =>
spark
.read
.format("org.elasticsearch.spark.sql")
.load(ind)
}
}
This function returns Option[DataFrame].
Then I want to use this function as follows:
val df = getData(spark, indices)
df.persist(StorageLevel.MEMORY_AND_DISK)
Of course the last two lines of code will not compile because df might be None. What is the idiomatic way deal with None output in Scala?
I would like to throw an exception and stop the program if df is None. Otherwise I want to persist it.

If you do care about the None I'd use simple pattern match here:
df match {
case None => throw new RuntimeException()
case Some(dataFrame) => dataFrame.persist(StorageLevel.MEMORY_AND_DISK)
}
But if you don't care, just use foreach like:
df.foreach { dataFrame =>
dataFrame.persist(StorageLevel.MEMORY_AND_DISK)
}

val df = dfOption.getOrElse(throw new Exception("Disaster Strikes"))
df.persist(...)

Related

Spark accumulator empty when used in UDF

I was working on optimizing my Spark process, and was trying to use a UDF with an accumulator. I have gotten the accumulator to work on its own, and was looking to see if I would get any speed up using a UDF. But instead, when I wrap the accumulator in the UDF, it remains empty. Am I going something wrong in particular? Is there something going on with Lazy Execution where even with my .count it is still not executing?
Input:
0,[0.11,0.22]
1,[0.22,0.33]
Output:
(0,0,0.11),(0,1,0.22),(1,0,0.22),(1,1,0.33)
Code
val accum = new MapAccumulator2d()
val session = SparkSession.builder().getOrCreate()
session.sparkContext.register(accum)
//Does not work - Empty Accumlator
val rowAccum = udf((itemId: Int, item: mutable.WrappedArray[Float]) => {
val map = item
.zipWithIndex
.map(ff => {
((itemId, ff._2), ff._1.toDouble)
}).toMap
accum.add(map)
itemId
})
dataFrame.select(rowAccum(col("itemId"), col("jaccardList"))).count
//Works
dataFrame.foreach(f => {
val map = f.getAs[mutable.WrappedArray[Float]](1)
.zipWithIndex
.map(ff => {
((f.getInt(0), ff._2), ff._1.toDouble)
}).toMap
accum.add(map)
})
val list = accum.value.toList.map(f => (f._1._1, f._1._2, f._2))
Looks like the only issue here is using count to "trigger" the lazily-evaluated UDF: Spark is "smart" enough to realize that the select operation can't change the result of count and therefore doesn't really execute the UDF. Choosing a different operation (e.g. collect) shows that the UDF works and updates the accumulator.
Here's a (more concise) example:
val accum = sc.longAccumulator
val rowAccum = udf((itemId: Int) => { accum.add(itemId); itemId })
val dataFrame = Seq(1,2,3,4,5).toDF("itemId")
dataFrame.select(rowAccum(col("itemId"))).count() // won't trigger UDF
println(s"RESULT: ${accum.value}") // prints 0
dataFrame.select(rowAccum(col("itemId"))).collect() // triggers UDF
println(s"RESULT: ${accum.value}") // prints 15

Why do SparkSQL UDF return a dataframe with columns names in the format UDF("Original Column Name")?

So the dataframe I get after running the following code is exactly how I want it to be. It is the same dataframe as the original but all cells with purely numeric data have had all brackets and slashes removed (brackets are replaced with a minus sign at the front).
stringModifierIterator takes in a dataframe and returns a List[Column]. The List[Column] can then be used like in the command dataframe.select(List[Column]: _*) to create a new dataframe.
Unfortunately, the column names have been altered to something like UDF("Original Column Name") and I can't figure out why.
def stringModifierIterator(dataFrame: DataFrame, dataFrameColumns: Array[String], uDF: UserDefinedFunction): List[Column] ={
if(dataFrameColumns.isEmpty){
Nil
} else {
uDF(dataFrame(dataFrameColumns.head)) :: stringModifierIterator(dataFrame, dataFrameColumns.tail, uDF)
}
}
val stringModifierFunction: (String => String) = { s: String => Option(s).map(modifier).getOrElse("0") }
def modifier(inputString: String): String = {
???
}
This is what the column names look like when I use df.show()
You can solve this by explicitly naming the columns you create with the UDF in stringModifierIterator using Column.as:
def stringModifierIterator(dataFrame: DataFrame, dataFrameColumns: Array[String], uDF: UserDefinedFunction): List[Column] ={
if(dataFrameColumns.isEmpty){
Nil
} else {
val col = dataFrameColumns.head
uDF(dataFrame(col)).as(col) :: stringModifierIterator(dataFrame, dataFrameColumns.tail, uDF)
}
}
BTW, this method can be be much shorter and simpler without recursion:
def stringModifierIterator(dataFrame: DataFrame, dataFrameColumns: Array[String], uDF: UserDefinedFunction): List[Column] ={
dataFrameColumns.toList.map(col => uDF(dataFrame(col)).as(col))
}

How to correctly handle Option in Spark/Scala?

I have a method, createDataFrame, which returns an Option[DataFrame]. I then want to 'get' the DataFrame and use it in later code. I'm getting a type mismatch that I can't fix:
val df2: DataFrame = createDataFrame("filename.txt") match {
case Some(df) => { //proceed with pipeline
df.filter($"activityLabel" > 0)
case None => println("could not create dataframe")
}
val Array(trainData, testData) = df2.randomSplit(Array(0.5,0.5),seed = 12345)
I need df2 to be of type: DataFrame otherwise later code won't recognise df2 as a DataFrame e.g. val Array(trainData, testData) = df2.randomSplit(Array(0.5,0.5),seed = 12345)
However, the case None statement is not of type DataFrame, it returns Unit, so won't compile. But if I don't declare the type of df2 the later code won't compile as it is not recognised as a DataFrame. If someone can suggest a fix that would be helpful - been going round in circles with this for some time. Thanks
What you need is a map. If you map over an Option[T] you are doing something like: "if it's None I'm doing nothing, otherwise I transform the content of the Option in something else. In your case this content is the dataframe itself. So inside this myDFOpt.map() function you can put all your dataframe transformation and just in the end do the pattern matching you did, where you may print something if you have a None.
edit:
val df2: DataFrame = createDataFrame("filename.txt").map(df=>{
val filteredDF=df.filter($"activityLabel" > 0)
val Array(trainData, testData) = filteredDF.randomSplit(Array(0.5,0.5),seed = 12345)})

Filtering One RDD based on another RDD using regex

I have two RDD's of the form:
data_wo_header: RDD[String], data_test_wo_header: RDD[String]
scala> data_wo_header.first
res2: String = 1,2,3.5,1112486027
scala> data_test_wo_header.first
res2: String = 1,2
RDD2 is smaller than RDD 1. I am trying to filter RDD1 by removing the elements whose regEx matches with RDD2.
The 1,2 in the above example represent UserID,MovID. Since it's present in the test I want the new RDD such that it's removed from RDD1.
I have asked a similar ques but it is requiring to do unnecessary split of RDD.
I am trying to do something of this sort but it's not working:
def create_training(data_wo_header: RDD[String], data_test_wo_header: RDD[String]): List[String] = {
var ratings_train = new ListBuffer[String]()
data_wo_header.foreach(x => {
data_test_wo_header.foreach(y => {
if (x.indexOf(y) == 0) {
ratings_train += x
}
})
})
val ratings_train_list = ratings_train.toList
return ratings_train_list
}
How should I do a regex match and filter based on it.
You can use broadcast variable to share state of rdd2 and then filter rdd1 based on broadcasted variable of rdd2. I replicate your code and this works for me
def create_training(data_wo_header: RDD[String], data_test_wo_header: RDD[String]): List[String] = {
val rdd2array = sparkSession.sparkContext.broadcast(data_test_wo_header.collect())
val training_set = data_wo_header.filter{
case(x) => rdd2array.value.filter(y => x.matches(y)).length == 0
}
training_set.collect().toList
}
Also with scala and spark I recommend you if it is possible to avoid foreach and use more functional paradigm with map,flatMap and filter functions

Pass array as an UDF parameter in Spark SQL

I'm trying to transform a dataframe via a function that takes an array as a parameter. My code looks something like this:
def getCategory(categories:Array[String], input:String): String = {
categories(input.toInt)
}
val myArray = Array("a", "b", "c")
val myCategories =udf(getCategory _ )
val df = sqlContext.parquetFile("myfile.parquet)
val df1 = df.withColumn("newCategory", myCategories(lit(myArray), col("myInput"))
However, lit doesn't like arrays and this script errors. I tried definining a new partially applied function and then the udf after that :
val newFunc = getCategory(myArray, _:String)
val myCategories = udf(newFunc)
val df1 = df.withColumn("newCategory", myCategories(col("myInput")))
This doesn't work either as I get a nullPointer exception and it appears myArray is not being recognized. Any ideas on how I pass an array as a parameter to a function with a dataframe?
On a separate note, any explanation as to why doing something simple like using a function on a dataframe is so complicated (define function, redefine it as UDF, etc, etc)?
Most likely not the prettiest solution but you can try something like this:
def getCategory(categories: Array[String]) = {
udf((input:String) => categories(input.toInt))
}
df.withColumn("newCategory", getCategory(myArray)(col("myInput")))
You could also try an array of literals:
val getCategory = udf(
(input:String, categories: Array[String]) => categories(input.toInt))
df.withColumn(
"newCategory", getCategory($"myInput", array(myArray.map(lit(_)): _*)))
On a side note using Map instead of Array is probably a better idea:
def mapCategory(categories: Map[String, String], default: String) = {
udf((input:String) => categories.getOrElse(input, default))
}
val myMap = Map[String, String]("1" -> "a", "2" -> "b", "3" -> "c")
df.withColumn("newCategory", mapCategory(myMap, "foo")(col("myInput")))
Since Spark 1.5.0 you can also use an array function:
import org.apache.spark.sql.functions.array
val colArray = array(myArray map(lit _): _*)
myCategories(lit(colArray), col("myInput"))
See also Spark UDF with varargs