Index of word in string 'covering' certain position - scala

Not sure if this is the right place to ask but I couldn't find any related or similar questions.
Anyway: imagine you have a certain string like
val exampleString = "Hello StackOverflow this is my question, cool right?"
If given a position in this string, for example 23, return the word that 'occupies' this position in the string. If we look at the example string, we can see that the 23rd character is the letter 's' (the last character of 'this'), so we should return index = 5 (because 'this' is the 5th word). In my question spaces are counted as words. If, for example, we were given position 5, we land on the first space and thus we should return index = 1.
I'm implementing this in Scala (but this should be quite language-agnostic and I would love to see implementations in other languages).
Currently I have the following approach (assume exampleString is the given string and charPosition the given position):
exampleString.split("((?<= )|(?= ))").scanLeft(0)((a, b) => a + b.length()).drop(1).zipWithIndex.takeWhile(_._1 <= charPosition).last._2 + 1
This works, but it is way too complex to be honest. Is there a better (more efficient?) way to achieve this. I'm fairly new to functions like fold, scan, map, filter ... but I would love to learn more.
Thanks in advance.

def wordIndex(exampleString: String, index: Int): Int = {
exampleString.take(index + 1).foldLeft((0, exampleString.head.isWhitespace)) {
case ((n, isWhitespace), c) =>
if (isWhitespace == c.isWhitespace) (n, isWhitespace)
else (n + 1, !isWhitespace)
}._1
}
This will fold over the string, keeping track of whether the previous character was a whitespace or not, and if it detects a change, it will flip the boolean and add 1 to the count (n).
This will be able to handle groups of spaces (e.g. in hello world, world would be at position 2), and also spaces at the start of the string would count as index 0 and the first word would be index 1.
Note that this can't handle when the input is an empty string, I'll let you decide what you want to do in that case.

Related

Strange behavior of Scala

Can any of you explain why this is happening?
val s = "abcdefg"
val slides = s.sliding(4)
val n1 = slides.length
val n2 = slides.dropWhile(foo).length
println(n1) // 4
println(n2) // 0
println(slides.length) // 0
But:
val s = "abcdefg"
println(s.sliding(4).length) // 4
println(s.sliding(4).dropWhile(foo).length) // 3
println(s.sliding(4).length) // 4
Don't pay attention to the function "foo", it's a simple method to check if a string doesn't contain the letter "c".
Unfortunately, I don't understand this programming language behavior. Maybe someone with more knowledge can answer why this is happening.
slides is an Iterator. It is a special kind of "collection", that you can only traverse once.
Once you ask for its length, it has to scan through (and discard) all of its elements, to count them, so, it becomes empty, and when you ask for its length again (dropWhile is inconsequential here), it is 0.
This is useful in cases when you need to process a huge collection without loading it into memory all at once (e.g., reading a huge file line by line, to see if it contains the word "google" somewhere).
sliding returns an iterator, because making it traversable more than once may be expensive, but is rarely needed.
If you need to traverse it more than once, do val slides = s.sliding(4).toSeq

Scala: For loop that matches ints in a List

New to Scala. I'm iterating a for loop 100 times. 10 times I want condition 'a' to be met and 90 times condition 'b'. However I want the 10 a's to occur at random.
The best way I can think is to create a val of 10 random integers, then loop through 1 to 100 ints.
For example:
val z = List.fill(10)(100).map(scala.util.Random.nextInt)
z: List[Int] = List(71, 5, 2, 9, 26, 96, 69, 26, 92, 4)
Then something like:
for (i <- 1 to 100) {
whenever i == to a number in z: 'Condition a met: do something'
else {
'condition b met: do something else'
}
}
I tried using contains and == and =! but nothing seemed to work. How else can I do this?
Your generation of random numbers could yield duplicates... is that OK? Here's how you can easily generate 10 unique numbers 1-100 (by generating a randomly shuffled sequence of 1-100 and taking first ten):
val r = scala.util.Random.shuffle(1 to 100).toList.take(10)
Now you can simply partition a range 1-100 into those who are contained in your randomly generated list and those who are not:
val (listOfA, listOfB) = (1 to 100).partition(r.contains(_))
Now do whatever you want with those two lists, e.g.:
println(listOfA.mkString(","))
println(listOfB.mkString(","))
Of course, you can always simply go through the list one by one:
(1 to 100).map {
case i if (r.contains(i)) => println("yes: " + i) // or whatever
case i => println("no: " + i)
}
What you consider to be a simple for-loop actually isn't one. It's a for-comprehension and it's a syntax sugar that de-sugares into chained calls of maps, flatMaps and filters. Yes, it can be used in the same way as you would use the classical for-loop, but this is only because List is in fact a monad. Without going into too much details, if you want to do things the idiomatic Scala way (the "functional" way), you should avoid trying to write classical iterative for loops and prefer getting a collection of your data and then mapping over its elements to perform whatever it is that you need. Note that collections have a really rich library behind them which allows you to invoke cool methods such as partition.
EDIT (for completeness):
Also, you should avoid side-effects, or at least push them as far down the road as possible. I'm talking about the second example from my answer. Let's say you really need to log that stuff (you would be using a logger, but println is good enough for this example). Doing it like this is bad. Btw note that you could use foreach instead of map in that case, because you're not collecting results, just performing the side effects.
Good way would be to compute the needed stuff by modifying each element into an appropriate string. So, calculate the needed strings and accumulate them into results:
val results = (1 to 100).map {
case i if (r.contains(i)) => ("yes: " + i) // or whatever
case i => ("no: " + i)
}
// do whatever with results, e.g. print them
Now results contains a list of a hundred "yes x" and "no x" strings, but you didn't do the ugly thing and perform logging as a side effect in the mapping process. Instead, you mapped each element of the collection into a corresponding string (note that original collection remains intact, so if (1 to 100) was stored in some value, it's still there; mapping creates a new collection) and now you can do whatever you want with it, e.g. pass it on to the logger. Yes, at some point you need to do "the ugly side effect thing" and log the stuff, but at least you will have a special part of code for doing that and you will not be mixing it into your mapping logic which checks if number is contained in the random sequence.
(1 to 100).foreach { x =>
if(z.contains(x)) {
// do something
} else {
// do something else
}
}
or you can use a partial function, like so:
(1 to 100).foreach {
case x if(z.contains(x)) => // do something
case _ => // do something else
}

Calculate sums of even/odd pairs on Hadoop?

I want to create a parallel scanLeft(computes prefix sums for an associative operator) function for Hadoop (scalding in particular; see below for how this is done).
Given a sequence of numbers in a hdfs file (one per line) I want to calculate a new sequence with the sums of consecutive even/odd pairs. For example:
input sequence:
0,1,2,3,4,5,6,7,8,9,10
output sequence:
0+1, 2+3, 4+5, 6+7, 8+9, 10
i.e.
1,5,9,13,17,10
I think in order to do this, I need to write an InputFormat and InputSplits classes for Hadoop, but I don't know how to do this.
See this section 3.3 here. Below is an example algorithm in Scala:
// for simplicity assume input length is a power of 2
def scanadd(input : IndexedSeq[Int]) : IndexedSeq[Int] =
if (input.length == 1)
input
else {
//calculate a new collapsed sequence which is the sum of sequential even/odd pairs
val collapsed = IndexedSeq.tabulate(input.length/2)(i => input(2 * i) + input(2*i+1))
//recursively scan collapsed values
val scancollapse = scanadd(collapse)
//now we can use the scan of the collapsed seq to calculate the full sequence
val output = IndexedSeq.tabulate(input.length)(
i => i.evenOdd match {
//if an index is even then we can just look into the collapsed sequence and get the value
// otherwise we can look just before it and add the value at the current index
case Even => scancollapse(i/2)
case Odd => scancollapse((i-1)/2) + input(i)
}
output
}
I understand that this might need a fair bit of optimization for it to work nicely with Hadoop. Translating this directly I think would lead to pretty inefficient Hadoop code. For example, Obviously in Hadoop you can't use an IndexedSeq. I would appreciate any specific problems you see. I think it can probably be made to work well, though.
Superfluous. You meant this code?
val vv = (0 to 1000000).grouped(2).toVector
vv.par.foldLeft((0L, 0L, false))((a, v) =>
if (a._3) (a._1, a._2 + v.sum, !a._3) else (a._1 + v.sum, a._2, !a._3))
This was the best tutorial I found for writing an InputFormat and RecordReader. I ended up reading the whole split as one ArrayWritable record.

Use forall instead of filter on List[A]

Am trying to determine whether or not to display an overtime game display flag in weekly game results report.
Database game results table has 3 columns (p4,p5,p6) that represent potential overtime game period score total ( for OT, Double OT, and Triple OT respectively). These columns are mapped to Option[Int] in application layer.
Currently I am filtering through game result teamA, teamB pairs, but really I just want to know if an OT game exists of any kind (vs. stepping through the collection).
def overtimeDisplay(a: GameResult, b: GameResult) = {
val isOT = !(List(a,b).filter(_.p4.isDefined).filter(_.p5.isDefined).filter(_.p6.isDefined).isEmpty)
if(isOT) {
<b class="b red">
{List( ((a.p4,a.p5,a.p6),(b.p4,b.p5,b.p6)) ).zipWithIndex.map{
case( ((Some(_),None,None), (Some(_),None,None)), i)=> "OT"
case( ((Some(_),Some(_),None), (Some(_),Some(_),None )), i)=> "Double OT"
case( ((Some(_),Some(_),Some(_)), (Some(_),Some(_),Some(_) )), i)=> "Triple OT"
}}
</b>
}
else scala.xml.NodeSeq.Empty
}
Secondarily, the determination of which type of overtime to display, currently that busy pattern match (which, looking at it now, does not appear cover all the scoring scenarios), could probably be done in a more functional/concise manner.
Feel free to lay it down if you have the better way.
Thanks
Not sure if I understand the initial code correctly, but here is an idea:
val results = List(a, b).map(r => Seq(r.p4, r.p5, r.p6).flatten)
val isOT = results.exists(_.nonEmpty)
val labels = IndexedSeq("", "Double ", "Triple ")
results.map(p => labels(p.size - 1) + "OT")
Turning score column to flat list in first line is crucial here. You have GameResult(p4: Option[Int], p5: Option[Int], p6: Option[Int]) which you can map to Seq[Option[Int]]: r => Seq(r.p4, r.p5, r.p6) and later flatten to turn Some[Int] to Int and get rid of None. This will turn Some(42), None, None into Seq(42).
Looking at this:
val isOT = !(List(a,b).filter(_.p4.isDefined).filter(_.p5.isDefined).filter(_.p6.isDefined).isEmpty)
This can be rewritten using exists instead of filter. I would rewrite it as follows:
List(a, b).exists(x => x.p4.isDefined && x.p5.isDefined && x.p6.isDefined)
In addition to using exists, I am combining the three conditions you passed to the filters into a single anonymous function.
In addition, I don't know why you're using zipWithIndex when it doesn't seem as though you're using the index in the map function afterwards. It could be removed entirely.

For loop in scala without sequence?

So, while working my way through "Scala for the Impatient" I found myself wondering: Can you use a Scala for loop without a sequence?
For example, there is an exercise in the book that asks you to build a counter object that cannot be incremented past Integer.MAX_VALUE. In order to test my solution, I wrote the following code:
var c = new Counter
for( i <- 0 to Integer.MAX_VALUE ) c.increment()
This throws an error: sequences cannot contain more than Int.MaxValue elements.
It seems to me that means that Scala is first allocating and populating a sequence object, with the values 0 through Integer.MaxValue, and then doing a foreach loop on that sequence object.
I realize that I could do this instead:
var c = new Counter
while(c.value < Integer.MAX_VALUE ) c.increment()
But is there any way to do a traditional C-style for loop with the for statement?
In fact, 0 to N does not actually populate anything with integers from 0 to N. It instead creates an instance of scala.collection.immutable.Range, which applies its methods to all the integers generated on the fly.
The error you ran into is only because you have to be able to fit the number of elements (whether they actually exist or not) into the positive part of an Int in order to maintain the contract for the length method. 1 to Int.MaxValue works fine, as does 0 until Int.MaxValue. And the latter is what your while loop is doing anyway (to includes the right endpoint, until omits it).
Anyway, since the Scala for is a very different (much more generic) creature than the C for, the short answer is no, you can't do exactly the same thing. But you can probably do what you want with for (though maybe not as fast as you want, since there is some performance penalty).
Wow, some nice technical answers for a simple question (which is good!) But in case anyone is just looking for a simple answer:
//start from 0, stop at 9 inclusive
for (i <- 0 until 10){
println("Hi " + i)
}
//or start from 0, stop at 9 inclusive
for (i <- 0 to 9){
println("Hi " + i)
}
As Rex pointed out, "to" includes the right endpoint, "until" omits it.
Yes and no, it depends what you are asking for. If you're asking whether you can iterate over a sequence of integers without having to build that sequence first, then yes you can, for instance using streams:
def fromTo(from : Int, to : Int) : Stream[Int] =
if(from > to) {
Stream.empty
} else {
// println("one more.") // uncomment to see when it is called
Stream.cons(from, fromTo(from + 1, to))
}
Then:
for(i <- fromTo(0, 5)) println(i)
Writing your own iterator by defining hasNext and next is another option.
If you're asking whether you can use the 'for' syntax to write a "native" loop, i.e. a loop that works by incrementing some native integer rather than iterating over values produced by an instance of an object, then the answer is, as far as I know, no. As you may know, 'for' comprehensions are syntactic sugar for a combination of calls to flatMap, filter, map and/or foreach (all defined in the FilterMonadic trait), depending on the nesting of generators and their types. You can try to compile some loop and print its compiler intermediate representation with
scalac -Xprint:refchecks
to see how they are expanded.
There's a bunch of these out there, but I can't be bothered googling them at the moment. The following is pretty canonical:
#scala.annotation.tailrec
def loop(from: Int, until: Int)(f: Int => Unit): Unit = {
if (from < until) {
f(from)
loop(from + 1, until)(f)
}
}
loop(0, 10) { i =>
println("Hi " + i)
}